Active width at a slanted active boundary in directed percolation

被引:9
作者
Chen, CC [1 ]
Park, H
den Nijs, M
机构
[1] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[2] Inha Univ, Dept Phys, Inchon 402751, South Korea
来源
PHYSICAL REVIEW E | 1999年 / 60卷 / 03期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevE.60.2496
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The width W of the active region around an active moving wall in a directed percolation process diverges at the percolation threshold p(c) as W similar or equal to A epsilon(-nu)parallel to ln(epsilon(0)/epsilon), with epsilon=p(c)-p, epsilon(0) a constant, and nu(parallel to) = 1.734 the critical exponent of the characteristic time needed to reach the stationary state xi(parallel to)similar to epsilon(-nu)parallel to The logarithmic factor arises from screening the statistically independent needle shaped subclusters in the active region. Numerical data confirm this scaling behavior. [S1063-651X(99)00509-7].
引用
收藏
页码:2496 / 2500
页数:5
相关论文
共 16 条
[1]  
CHEN CC, 1980, UNPUB J PHYS A, V13, pL423
[2]   EQUIVALENCE OF CELLULAR AUTOMATA TO ISING-MODELS AND DIRECTED PERCOLATION [J].
DOMANY, E ;
KINZEL, W .
PHYSICAL REVIEW LETTERS, 1984, 53 (04) :311-314
[3]   Directed percolation near a wall [J].
Essam, JW ;
Guttmann, AJ ;
Jensen, I ;
TanlaKishani, D .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (08) :1619-1628
[4]  
FRDOJDH P, 1998, J PHYS A, V31, P2311
[5]   REGGEON FIELD-THEORY (SCHLOGL 1ST MODEL) ON A LATTICE - MONTE-CARLO CALCULATIONS OF CRITICAL BEHAVIOR [J].
GRASSBERGER, P ;
DELATORRE, A .
ANNALS OF PHYSICS, 1979, 122 (02) :373-396
[6]   REGGEON FIELD-THEORY AND MARKOV-PROCESSES [J].
GRASSBERGER, P ;
SUNDERMEYER, K .
PHYSICS LETTERS B, 1978, 77 (02) :220-222
[7]   Spreading in media with long-time memory [J].
Grassberger, P ;
Chate, H ;
Rousseau, G .
PHYSICAL REVIEW E, 1997, 55 (03) :2488-2495
[8]   Numerical study of local and global persistence in directed percolation [J].
Hinrichsen, H ;
Koduvely, HM .
EUROPEAN PHYSICAL JOURNAL B, 1998, 5 (02) :257-264
[9]   Low-density series expansions for directed percolation on square and triangular lattices [J].
Jensen, I .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (22) :7013-7040
[10]   DIRECTED PERCOLATION - A FINITE-SIZE RENORMALIZATION GROUP-APPROACH [J].
KINZEL, W ;
YEOMANS, JM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (05) :L163-L168