Lyapunov instabilities in lattices of interacting classical spins at infinite temperature

被引:21
作者
de Wijn, A. S. [1 ]
Hess, B. [2 ]
Fine, B. V. [2 ]
机构
[1] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden
[2] Heidelberg Univ, Inst Theoret Phys, D-69120 Heidelberg, Germany
基金
美国国家科学基金会; 瑞典研究理事会;
关键词
KOLMOGOROV-SINAI ENTROPY; LONG-TIME RELAXATION; EXPONENT; SYSTEMS;
D O I
10.1088/1751-8113/46/25/254012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We numerically investigate Lyapunov instabilities for one-, two-and three-dimensional lattices of interacting classical spins at infinite temperature. We obtain the largest Lyapunov exponents for a very large variety of nearest-neighbor spin-spin interactions and complete Lyapunov spectra in a few selected cases. We investigate the dependence of the largest Lyapunov exponents and whole Lyapunov spectra on the lattice size and find that both quickly become size-independent. Finally, we analyze the dependence of the largest Lyapunov exponents on the anisotropy of spin-spin interaction with the particular focus on the difference between bipartite and nonbipartite lattices.
引用
收藏
页数:11
相关论文
共 35 条
[1]   Lyapunov exponent of many-particle systems: Testing the stochastic approach - art. no. 036120 [J].
Anteneodo, C ;
Maia, RNP ;
Vallejos, RO .
PHYSICAL REVIEW E, 2003, 68 (03) :10-361201
[2]   Lyapunov exponent of a many body system and its transport coefficients [J].
Barnett, DM ;
Tajima, T ;
Nishihara, K ;
Ueshima, Y ;
Furukawa, H .
PHYSICAL REVIEW LETTERS, 1996, 76 (11) :1812-1815
[3]  
Benettin G., 1980, Meccanica, V15, P21, DOI 10.1007/BF02128237
[4]  
Benettin Giancarlo, 1980, Meccanica, V15, P9, DOI DOI 10.1007/BF02128236
[5]   Largest Lyapunov Exponents for Lattices of Interacting Classical Spins [J].
de Wijn, A. S. ;
Hess, B. ;
Fine, B. V. .
PHYSICAL REVIEW LETTERS, 2012, 109 (03)
[6]   Goldstone modes in Lyapunov spectra of hard sphere systems [J].
De Wijn, Astrid S. ;
Van Beijeren, Henk .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 70 (1 2) :016207-1
[7]   Lyapunov spectra of billiards with cylindrical scatterers: Comparison with many-particle systems [J].
de Wijn, AS .
PHYSICAL REVIEW E, 2005, 72 (02)
[8]   Lyapunov spectrum of the many-dimensional dilute random Lorentz gas [J].
De Wijn, Astrid S. ;
Van Beijeren, Henk .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 70 (3 2) :036209-1
[9]   A radius of curvature approach to the Kolmogorov-Sinai entropy of dilute hard particles in equilibrium [J].
de Wijn, Astrid S. ;
van Beijeren, Henk .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
[10]   Kolmogorov-Sinai entropy and Lyapunov spectra of a hard-sphere gas [J].
Dellago, C ;
Posch, HA .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1997, 240 (1-2) :68-83