Quandle cocycles from invariant theory

被引:12
作者
Nosaka, Takefumi [1 ]
机构
[1] Kyushu Univ, Fac Math, Nishi Ku, Fukuoka 8190395, Japan
关键词
Group homology; Quandle; Invariant theory; Knots;
D O I
10.1016/j.aim.2013.05.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a group. Any G-module M has an algebraic structure called a G-family of Alexander quandles. Given a 2-cocycle of a cohomology associated with this G-family, topological invariants of (handlebody) knots in the 3-sphere are defined. We develop a simple algorithm to algebraically construct n-cocycles of this G-family from G-invariant group n-cocycles of the abelian group M. We present many examples of 2-cocycles of these G-families using facts from (modular) invariant theory. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:423 / 438
页数:16
相关论文
共 14 条
  • [1] Brown K. S., 1994, GRADUATE TEXTS MATH, V87
  • [2] Vector invariants for the two-dimensional modular representation of a cyclic group of prime order
    Campbell, H. E. A.
    Shank, R. J.
    Wehlau, D. L.
    [J]. ADVANCES IN MATHEMATICS, 2010, 225 (02) : 1069 - 1094
  • [3] Campbell HEAE, 2011, ENCYCL MATH SCI, V139, P1, DOI 10.1007/978-3-642-17404-9
  • [4] Quandle cohomology and state-sum invariants of knotted curves and surfaces
    Carter, JS
    Jelsovsky, D
    Kamada, S
    Langford, L
    Saito, M
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (10) : 3947 - 3989
  • [5] Geometric interpretations of quandle homology
    Carter, JS
    Kamada, S
    Saito, M
    [J]. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2001, 10 (03) : 345 - 386
  • [6] The rack space
    Fenn, Roger
    Rourke, Colin
    Sanderson, Brian
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (02) : 701 - 740
  • [7] Inoue A., ARXIVMATH10122923
  • [8] Ishii A., ARXIV12051855
  • [9] Quandle Cocycle Invariants for Spatial Graphs and Knotted Handlebodies
    Ishii, Atsushi
    Iwakiri, Masahide
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2012, 64 (01): : 102 - 122
  • [10] A CLASSIFYING INVARIANT OF KNOTS, THE KNOT QUANDLE
    JOYCE, D
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 1982, 23 (01) : 37 - 65