Poisson brackets, Novikov-Leibniz structures and integrable Riemann hydrodynamic systems

被引:7
作者
Artemovych, Orest D. [1 ]
Blackmore, Denis [2 ]
Prykarpatski, Anatolij K. [3 ]
机构
[1] Cracow Univ Technol, Inst Math, PL-31155 Krakow, Poland
[2] New Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA
[3] AGH Univ Sci & Technol, Dept Appl Math, 30 Mickiewicz Alley, PL-30059 Krakow, Poland
关键词
Poisson brackets; Hamiltonian operators; differential algebras; differentiations; loop-algebra; 2-cocycles; Novikov algebra; right Leibniz algebra; Riemann algebra; Riemann hydrodynamic hierarchy; integrability; NILPOTENT LIE-ALGEBRAS; AFFINE STRUCTURES; BAXTER EQUATION; DERIVATIONS; CLASSIFICATION; PREDERIVATIONS; MATRICES;
D O I
10.1080/14029251.2016.1274114
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A general differential-algebraic approach is devised for constructing multi-component Hamiltonian operators as differentiations on suitably constructed loop Lie algebras. The related Novikov-Leibniz algebraic structures are presented and a new non-associative "Riemann" algebra is constructed, which is closely related to the infinite multi-component Riemann integrable hierarchies. A close relationship to the standard symplectic analysis techniques is also discussed.
引用
收藏
页码:41 / 72
页数:32
相关论文
共 79 条
[1]  
ABRAHAM R., 1978, Foundations of Mechanics
[2]   On nilpotent and simple Leibniz algebras [J].
Albeverio, S ;
Ayupov, SA ;
Omirov, BA .
COMMUNICATIONS IN ALGEBRA, 2005, 33 (01) :159-172
[3]  
Amini M., 2011, APPL MATH, V2, P1027
[4]  
[Anonymous], 2013, Mathematical methods of classical mechanics
[5]  
[Anonymous], 1998, ALGEBRAIC INTEGRABIL
[6]  
[Anonymous], 1993, DIRAC STRUCTURES INT
[7]  
[Anonymous], 1986, Hamiltonian Methods in the Theory of Solitons
[8]  
Ayupov SA, 1998, ALGEBRA AND OPERATOR THEORY, P1
[9]   Transitive Novikov algebras on four-dimensional nilpotent Lie algebras [J].
Bai, CM ;
Meng, DJ .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2001, 40 (10) :1761-1768
[10]   The classification of Novikov algebras in low dimensions: invariant bilinear forms (vol 34, pg 1581, 2001) [J].
Bai, CM ;
Meng, DJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (39) :8193-8197