A fractional calculus based model for the simulation of an outbreak of dengue fever

被引:327
作者
Diethelm, Kai [1 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Computat Math, D-38106 Braunschweig, Germany
关键词
Dengue fever; Mathematical model; Epidemiology; Fractional calculus; Caputo derivative;
D O I
10.1007/s11071-012-0475-2
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We propose a new mathematical model for the simulation of the dynamics of a dengue fever outbreak. Our model differs from the classical model in that it involves nonlinear differential equations of fractional, not integer, order. Using statistics from the 2009 outbreak of the disease in the Cape Verde islands, we demonstrate that our model is capable of providing numerical results that agree very well with the real data.
引用
收藏
页码:613 / 619
页数:7
相关论文
共 16 条
[1]   Fractional Optimal Control Problems with Several State and Control Variables [J].
Agrawal, Om P. ;
Defterli, Ozlem ;
Baleanu, Dumitru .
JOURNAL OF VIBRATION AND CONTROL, 2010, 16 (13) :1967-1976
[2]  
[Anonymous], 2019, Dengue Guidelines for Diagnosis, Treatment, Prevention and Control
[3]  
[Anonymous], 2010, Fract. Calc. Appl. Anal
[4]  
Baleanu D., 2012, Fractional calculus: models and numerical methods
[5]   Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios [J].
Caminade, Cyril ;
Medlock, Jolyon M. ;
Ducheyne, Els ;
McIntyre, K. Marie ;
Leach, Steve ;
Baylis, Matthew ;
Morse, Andrew P. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2012, 9 (75) :2708-2717
[6]   Stability analysis of Caputo fractional-order nonlinear systems revisited [J].
Delavari, Hadi ;
Baleanu, Dumitru ;
Sadati, Jalil .
NONLINEAR DYNAMICS, 2012, 67 (04) :2433-2439
[7]  
Demirci E, 2011, HACET J MATH STAT, V40, P287
[8]   Multi-term fractional differential equations, multi-order fractional differential systems and their numerical solution [J].
GNS Gesellschaft für numerische Simulation mbH, Am Gauberg 2, 38114 Braunschweig, Germany ;
不详 .
J. Eur. Syst. Autom., 2008, 6-8 (665-676) :665-676
[9]   Detailed error analysis for a fractional Adams method [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD .
NUMERICAL ALGORITHMS, 2004, 36 (01) :31-52
[10]   A predictor-corrector approach for the numerical solution of fractional differential equations [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :3-22