RANK-TWO VECTOR BUNDLES ON NON-MINIMAL RULED SURFACES

被引:0
作者
Aprodu, Marian [1 ,2 ]
Costa, Laura [3 ]
Miro-Roig, Rosa Maria [3 ]
机构
[1] Univ Bucuresti, Fac Matemat & Informat, Str Acad 14, Bucharest 010014, Romania
[2] Inst Matemat Simion Stoilow Acad Romane, Calea Grivitei 21 Sect 1, Bucharest 010702, Romania
[3] Fac Matemat & Informat, Dept Matemat & Informat, Gran Via Corts Catalanes 585, Barcelona 08007, Spain
关键词
MODULI SPACES; RATIONALITY;
D O I
10.1090/tran/7062
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We continue previous work by various authors and study the birational geometry of moduli spaces of stable rank-two vector bundles on surfaces with Kodaira dimension -infinity. To this end, we express vector bundles as natural extensions by using two numerical invariants associated to vector bundles, similar to the invariants defined by Brinzanescu and Stoia in the case of minimal surfaces. We compute explicitly these natural extensions on blowups of general points on a minimal surface. In the case of rational surfaces, we prove that any irreducible component of a moduli space is either rational or stably rational.
引用
收藏
页码:3913 / 3929
页数:17
相关论文
共 25 条
  • [1] [Anonymous], 1998, Lecture Notes in Pure and Applied Mathematics, V200, P201
  • [2] Moduli spaces of vector bundles over ruled surfaces
    Aprodu, M
    Brînzanescu, V
    [J]. NAGOYA MATHEMATICAL JOURNAL, 1999, 154 : 111 - 122
  • [3] Stable rank-2 vector bundles over ruled surfaces
    Aprodu, M
    Brinzanescu, V
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (03): : 295 - 300
  • [4] The Luroth Problem
    Beauville, Arnaud
    [J]. RATIONALITY PROBLEMS IN ALGEBRAIC GEOMETRY, 2016, 2172 : 1 - 27
  • [5] BRINZANESCU V, 1984, REV ROUM MATH PURE A, V29, P661
  • [6] Brinzanescu V., 1996, LECT NOTES MATH, V1624
  • [7] Moduli spaces of vector bundles on higher-dimensional varieties
    Costa, L
    Miró-Roig, RM
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 2001, 49 (03) : 605 - 620
  • [8] On the rationality of moduli spaces of vector bundles on Fano surfaces
    Costa, L
    Miró-Roig, RM
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 1999, 137 (03) : 199 - 220
  • [9] Rationality of moduli spaces of vector bundles on rational surfaces
    Costa, L
    Miro-Roig, RM
    [J]. NAGOYA MATHEMATICAL JOURNAL, 2002, 165 : 43 - 69
  • [10] Costa L, 1999, J REINE ANGEW MATH, V509, P151