SG-One: Similarity Guidance Network for One-Shot Semantic Segmentation

被引:340
作者
Zhang, Xiaolin [1 ]
Wei, Yunchao [1 ]
Yang, Yi [1 ]
Huang, Thomas S. [2 ,3 ]
机构
[1] Univ Technol Sydney, Ctr Artificial Intelligence, ReLER Lab, Sydney, NSW 2007, Australia
[2] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61901 USA
[3] Univ Illinois, Beckman Inst, Urbana, IL 61901 USA
基金
澳大利亚研究理事会;
关键词
Image segmentation; Feature extraction; Testing; Semantics; Training; Task analysis; Dogs; Few-shot learning; image segmentation; neural networks; siamese network;
D O I
10.1109/TCYB.2020.2992433
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
One-shot image semantic segmentation poses a challenging task of recognizing the object regions from unseen categories with only one annotated example as supervision. In this article, we propose a simple yet effective similarity guidance network to tackle the one-shot (SG-One) segmentation problem. We aim at predicting the segmentation mask of a query image with the reference to one densely labeled support image of the same category. To obtain the robust representative feature of the support image, we first adopt a masked average pooling strategy for producing the guidance features by only taking the pixels belonging to the support image into account. We then leverage the cosine similarity to build the relationship between the guidance features and features of pixels from the query image. In this way, the possibilities embedded in the produced similarity maps can be adopted to guide the process of segmenting objects. Furthermore, our SG-One is a unified framework that can efficiently process both support and query images within one network and be learned in an end-to-end manner. We conduct extensive experiments on Pascal VOC 2012. In particular, our SG-One achieves the mIoU score of 46.3%, surpassing the baseline methods.
引用
收藏
页码:3855 / 3865
页数:11
相关论文
共 53 条
[11]   SegFlow: Joint Learning for Video Object Segmentation and Optical Flow [J].
Cheng, Jingchun ;
Tsai, Yi-Hsuan ;
Wang, Shengjin ;
Yang, Ming-Hsuan .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :686-695
[12]   BoxSup: Exploiting Bounding Boxes to Supervise Convolutional Networks for Semantic Segmentation [J].
Dai, Jifeng ;
He, Kaiming ;
Sun, Jian .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1635-1643
[13]  
Dong N., 2018, BMVC, P79
[14]   FlowNet: Learning Optical Flow with Convolutional Networks [J].
Dosovitskiy, Alexey ;
Fischer, Philipp ;
Ilg, Eddy ;
Haeusser, Philip ;
Hazirbas, Caner ;
Golkov, Vladimir ;
van der Smagt, Patrick ;
Cremers, Daniel ;
Brox, Thomas .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :2758-2766
[15]   The PASCAL Visual Object Classes Challenge: A Retrospective [J].
Everingham, Mark ;
Eslami, S. M. Ali ;
Van Gool, Luc ;
Williams, Christopher K. I. ;
Winn, John ;
Zisserman, Andrew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 111 (01) :98-136
[16]  
Finn C, 2017, PR MACH LEARN RES, V70
[17]  
Hariharan B, 2011, IEEE I CONF COMP VIS, P991, DOI 10.1109/ICCV.2011.6126343
[18]  
He K., 2017, IEEE INT C COMPUT VI, P2980, DOI [10.1109/ICCV.2017.322, 10.1109/iccv.201, DOI 10.1109/ICCV.2017.322]
[19]   Asymptotic Soft Filter Pruning for Deep Convolutional Neural Networks [J].
He, Yang ;
Dong, Xuanyi ;
Kang, Guoliang ;
Fu, Yanwei ;
Yan, Chenggang ;
Yang, Yi .
IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (08) :3594-3604
[20]  
Hou Q., 2018, P NIPS, P549