Tunable neuromimetic integrated system for emulating cortical neuron models

被引:25
作者
Grassia, Filippo [1 ]
Buhry, Laure [1 ]
Levi, Timothee [1 ]
Tomas, Jean [1 ]
Destexhe, Alain [2 ]
Saighi, Sylvain [1 ]
机构
[1] Univ Bordeaux, Lab Integrat Mat Syst, UMR CNRS 5218, F-33405 Talence, France
[2] CNRS, Unit Neurosci Informat &Complexite, Gif Sur Yvette, France
来源
FRONTIERS IN NEUROSCIENCE | 2011年 / 5卷
关键词
neuromimetic analog integrated circuits; biological neuron modeling; spiking neural networks;
D O I
10.3389/fnins.2011.00134
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Nowadays, many software solutions are currently available for simulating neuron models. Less conventional than software-based systems, hardware-based solutions generally combine digital and analog forms of computation. In previous work, we designed several neuromimetic chips, including the Galway chip that we used for this paper. These silicon neurons are based on the Hodgkin-Huxley formalism and they are optimized for reproducing a large variety of neuron behaviors thanks to tunable parameters. Due to process variation and device mismatch in analog chips, we use a full-custom fitting method in voltage-clamp mode to tune our neuromimetic integrated circuits. By comparing them with experimental electrophysiological data of these cells, we show that the circuits can reproduce the main firing features of cortical cell types. In this paper, we present the experimental measurements of our system which mimic the four most prominent biological cells: fast spiking, regular spiking, intrinsically bursting, and low-threshold spiking neurons into analog neuromimetic integrated circuit dedicated to cortical neuron simulations. This hardware and software platform will allow to improve the hybrid technique, also called "dynamic-clamp," that consists of connecting artificial and biological neurons to study the function of neuronal circuits.
引用
收藏
页数:12
相关论文
共 39 条
[1]  
ALVADO L, 2003, 7 INT WORK C ART NAT, V1, P670
[2]  
[Anonymous], 2008, VLSI CIRCUITS FOR BI
[3]   Real-time closed-loop setup for hybrid neural networks [J].
Bontorin, G. ;
Renaud, S. ;
Garenne, A. ;
Alvado, L. ;
Le Masson, G. ;
Tomas, J. .
2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, :3004-3007
[4]   Simulation of networks of spiking neurons:: A review of tools and strategies [J].
Brette, Romain ;
Rudolph, Michelle ;
Carnevale, Ted ;
Hines, Michael ;
Beeman, David ;
Bower, James M. ;
Diesmann, Markus ;
Morrison, Abigail ;
Goodman, Philip H. ;
Harris, Frederick C., Jr. ;
Zirpe, Milind ;
Natschlaeger, Thomas ;
Pecevski, Dejan ;
Ermentrout, Bard ;
Djurfeldt, Mikael ;
Lansner, Anders ;
Rochel, Olivier ;
Vieville, Thierry ;
Muller, Eilif ;
Davison, Andrew P. ;
El Boustani, Sami ;
Destexhe, Alain .
JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2007, 23 (03) :349-398
[5]  
Bruderle D., 2010, THESIS U HEILDEBERG, P229
[6]   A comprehensive workflow for general-purpose neural modeling with highly configurable neuromorphic hardware systems [J].
Bruederle, Daniel ;
Petrovici, Mihai A. ;
Vogginger, Bernhard ;
Ehrlich, Matthias ;
Pfeil, Thomas ;
Millner, Sebastian ;
Gruebl, Andreas ;
Wendt, Karsten ;
Mueller, Eric ;
Schwartz, Marc-Olivier ;
de Oliveira, Dan Husmann ;
Jeltsch, Sebastian ;
Fieres, Johannes ;
Schilling, Moritz ;
Mueller, Paul ;
Breitwieser, Oliver ;
Petkov, Venelin ;
Muller, Lyle ;
Davison, Andrew P. ;
Krishnamurthy, Pradeep ;
Kremkow, Jens ;
Lundqvist, Mikael ;
Muller, Eilif ;
Partzsch, Johannes ;
Scholze, Stefan ;
Zuehl, Lukas ;
Mayr, Christian ;
Destexhe, Alain ;
Diesmann, Markus ;
Potjans, Tobias C. ;
Lansner, Anders ;
Schueffny, Rene ;
Schemmel, Johannes ;
Meier, Karlheinz .
BIOLOGICAL CYBERNETICS, 2011, 104 (4-5) :263-296
[7]   Automated Parameter Estimation of the Hodgkin-Huxley Model Using the Differential Evolution Algorithm: Application to Neuromimetic Analog Integrated Circuits [J].
Buhry, Laure ;
Grassia, Filippo ;
Giremus, Audrey ;
Grivel, Eric ;
Renaud, Sylvie ;
Saighi, Sylvain .
NEURAL COMPUTATION, 2011, 23 (10) :2599-2625
[8]   Real-Time Simulation of Biologically Realistic Stochastic Neurons in VLSI [J].
Chen, Hsin ;
Saighi, Sylvain ;
Buhry, Laure ;
Renaud, Sylvie .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (09) :1511-1517
[9]  
COLE KS, 1949, ARCH SCI PHYSIOL, V3, P253
[10]   INTRINSIC FIRING PATTERNS OF DIVERSE NEOCORTICAL NEURONS [J].
CONNORS, BW ;
GUTNICK, MJ .
TRENDS IN NEUROSCIENCES, 1990, 13 (03) :99-104