Domain-Adversarial Neural Networks to Address the Appearance Variability of Histopathology Images

被引:84
作者
Lafarge, Maxime W. [1 ]
Pluim, Josien P. W. [1 ]
Eppenhof, Koen A. J. [1 ]
Moeskops, Pim [1 ]
Veta, Mitko [1 ]
机构
[1] Eindhoven Univ Technol, Dept Biomed Engn, Med Image Anal Grp, Eindhoven, Netherlands
来源
DEEP LEARNING IN MEDICAL IMAGE ANALYSIS AND MULTIMODAL LEARNING FOR CLINICAL DECISION SUPPORT | 2017年 / 10553卷
关键词
Domain-adversarial training; Histopathology image analysis;
D O I
10.1007/978-3-319-67558-9_10
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Preparing and scanning histopathology slides consists of several steps, each with a multitude of parameters. The parameters can vary between pathology labs and within the same lab over time, resulting in significant variability of the tissue appearance that hampers the generalization of automatic image analysis methods. Typically, this is addressed with ad-hoc approaches such as staining normalization that aim to reduce the appearance variability. In this paper, we propose a systematic solution based on domain-adversarial neural networks. We hypothesize that removing the domain information from the model representation leads to better generalization. We tested our hypothesis for the problem of mitosis detection in breast cancer histopathology images and made a comparative analysis with two other approaches. We show that combining color augmentation with domain-adversarial training is a better alternative than standard approaches to improve the generalization of deep learning methods.
引用
收藏
页码:83 / 91
页数:9
相关论文
共 8 条
[1]   Mitosis Detection in Breast Cancer Histology Images with Deep Neural Networks [J].
Ciresan, Dan C. ;
Giusti, Alessandro ;
Gambardella, Luca M. ;
Schmidhuber, Juergen .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2013, PT II, 2013, 8150 :411-418
[2]  
Ganin Y, 2016, J MACH LEARN RES, V17
[3]   Unsupervised Domain Adaptation in Brain Lesion Segmentation with Adversarial Networks [J].
Kamnitsas, Konstantinos ;
Baumgartner, Christian ;
Ledig, Christian ;
Newcombe, Virginia ;
Simpson, Joanna ;
Kane, Andrew ;
Menon, David ;
Nori, Aditya ;
Criminisi, Antonio ;
Rueckert, Daniel ;
Glocker, Ben .
INFORMATION PROCESSING IN MEDICAL IMAGING (IPMI 2017), 2017, 10265 :597-609
[4]   A METHOD FOR NORMALIZING HISTOLOGY SLIDES FOR QUANTITATIVE ANALYSIS [J].
Macenko, Marc ;
Niethammer, Marc ;
Marron, J. S. ;
Borland, David ;
Woosley, John T. ;
Guan, Xiaojun ;
Schmitt, Charles ;
Thomas, Nancy E. .
2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, 2009, :1107-+
[5]  
Ruifrok AC, 2001, ANAL QUANT CYTOL, V23, P291
[6]  
van der Maaten L, 2008, J MACH LEARN RES, V9, P2579
[7]   Mitosis Counting in Breast Cancer: Object-Level Interobserver Agreement and Comparison to an Automatic Method [J].
Veta, Mitko ;
van Diest, Paul J. ;
Jiwa, Mehdi ;
Al-Janabi, Shaimaa ;
Pluim, Josien P. W. .
PLOS ONE, 2016, 11 (08)
[8]   Assessment of algorithms for mitosis detection in breast cancer histopathology images [J].
Veta, Mitko ;
van Diest, Paul J. ;
Willems, Stefan M. ;
Wang, Haibo ;
Madabhushi, Anant ;
Cruz-Roa, Angel ;
Gonzalez, Fabio ;
Larsen, Anders B. L. ;
Vestergaard, Jacob S. ;
Dahl, Anders B. ;
Ciresan, Dan C. ;
Schmidhuber, Juergen ;
Giusti, Alessandro ;
Gambardella, Luca M. ;
Tek, F. Boray ;
Walter, Thomas ;
Wang, Ching-Wei ;
Kondo, Satoshi ;
Matuszewski, Bogdan J. ;
Precioso, Frederic ;
Snell, Violet ;
Kittler, Josef ;
de Campos, Teofilo E. ;
Khan, Adnan M. ;
Rajpoot, Nasir M. ;
Arkoumani, Evdokia ;
Lacle, Miangela M. ;
Viergever, Max A. ;
Pluim, Josien P. W. .
MEDICAL IMAGE ANALYSIS, 2015, 20 (01) :237-248