FAST SOLUTION OF PARABOLIC PROBLEMS IN THE TENSOR TRAIN/QUANTIZED TENSOR TRAIN FORMAT WITH INITIAL APPLICATION TO THE FOKKER-PLANCK EQUATION

被引:90
作者
Dolgov, S. V. [1 ]
Khoromskij, B. N. [1 ]
Oseledets, I. V. [2 ]
机构
[1] Max Planck Inst Math Nat Wissensch, D-04103 Leipzig, Germany
[2] Russian Acad Sci, Inst Numer Math, Moscow 117901, Russia
关键词
parabolic problems; QTT-format; density matrix renormalization group; higher dimensions; tensor methods; Fokker-Planck equation; dumbbell model; NUMERICAL-SOLUTION; APPROXIMATION; CONVERGENCE; ALGORITHMS; OPERATOR; FOURIER; SCHEME; RANK;
D O I
10.1137/120864210
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose two schemes of using the so-called quantized tensor train (QTT)-approximation for the solution of multidimensional parabolic problems. First, we present a simple one-step implicit time integration scheme using a solver in the QTT-format of the alternating linear scheme (ALS) type. As the second approach, we use the global space-time formulation, resulting in a large block linear system, encapsulating all time steps, and solve it at once in the QTT-format. We prove the QTT-rank estimate for certain classes of multivariate potentials and respective solutions in (x, t) variables. The log-linear complexity of storage and the solution time is observed in both spatial and time grid sizes. The method is applied to the Fokker-Planck equation arising from the beads-springs models of polymeric liquids.
引用
收藏
页码:A3016 / A3038
页数:23
相关论文
共 45 条
[1]   A new family of solvers for some, classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids [J].
Ammar, A. ;
Mokdad, B. ;
Chinesta, F. ;
Keunings, R. .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2006, 139 (03) :153-176
[2]  
[Anonymous], 2010, Technical Report 69
[3]   FINITE ELEMENT APPROXIMATION OF KINETIC DILUTE POLYMER MODELS WITH MICROSCOPIC CUT-OFF [J].
Barrett, John W. ;
Sueli, Endre .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2011, 45 (01) :39-89
[4]  
Bernstein S. N., 1926, Lecons sur les proprietes extremal es et la meilleure approximation des fonctions analytiques d'une variable reele
[5]   CONVERGENCE RATES FOR GREEDY ALGORITHMS IN REDUCED BASIS METHODS [J].
Binev, Peter ;
Cohen, Albert ;
Dahmen, Wolfgang ;
Devore, Ronald ;
Petrova, Guergana ;
Wojtaszczyk, Przemyslaw .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (03) :1457-1472
[6]   CONVERGENCE OF A GREEDY ALGORITHM FOR HIGH-DIMENSIONAL CONVEX NONLINEAR PROBLEMS [J].
Cances, Eric ;
Ehrlacher, Virginie ;
Lelievre, Tony .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 (12) :2433-2467
[7]   ANALYSIS OF INDIVIDUAL DIFFERENCES IN MULTIDIMENSIONAL SCALING VIA AN N-WAY GENERALIZATION OF ECKART-YOUNG DECOMPOSITION [J].
CARROLL, JD ;
CHANG, JJ .
PSYCHOMETRIKA, 1970, 35 (03) :283-&
[8]   Simulation of dilute polymer solutions using a Fokker-Planck equation [J].
Chauvière, C ;
Lozinski, A .
COMPUTERS & FLUIDS, 2004, 33 (5-6) :687-696
[9]   TENSOR RANK AND THE ILL-POSEDNESS OF THE BEST LOW-RANK APPROXIMATION PROBLEM [J].
de Silva, Vin ;
Lim, Lek-Heng .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (03) :1084-1127
[10]   Superfast Fourier Transform Using QTT Approximation [J].
Dolgov, Sergey ;
Khoromskij, Boris ;
Savostyanov, Dmitry .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2012, 18 (05) :915-953