REGULARITY AND FRACTAL DIMENSION OF PULLBACK ATTRACTORS FOR A NON-AUTONOMOUS SEMILINEAR DEGENERATE PARABOLIC EQUATION

被引:8
作者
Cung The Anh [1 ]
Tang Quoc Bao [2 ]
Le Thi Thuy [3 ]
机构
[1] Hanoi Natl Univ Educ, Dept Math, Hanoi, Vietnam
[2] Hanoi Univ Sci & Technol, Fac Appl Math & Informat, Hanoi, Vietnam
[3] Hanoi Elect Power Univ, Dept Math, Hanoi, Vietnam
关键词
EXISTENCE;
D O I
10.1017/S0017089512000663
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Considered here is the pullback attractor of the process associated with the first initial boundary value problem for the non-autonomous semilinear degenerate parabolic equation u(t) - div(sigma(x)del u) + f (u) = g( x, t) in a bounded domain Omega in R-N( N >= 2). We prove the regularity in the space L2p-2(Omega) boolean AND D-0(2)(Omega, sigma), and estimate the fractal dimension of the pullback attractor in L-2(Omega).
引用
收藏
页码:431 / 448
页数:18
相关论文
共 14 条
[1]   H2-boundedness of the pullback attractor for a non-autonomous reaction-diffusion equation [J].
Anguiano, M. ;
Caraballo, T. ;
Real, J. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (02) :876-880
[2]  
[Anonymous], 1985, Physical Origins and Classical Methods
[3]   On a variational degenerate elliptic problem [J].
Caldiroli, P ;
Musina, R .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2000, 7 (02) :187-199
[4]   Pullback attractors for asymptotically compact non-autonomous dynamical systems [J].
Caraballo, T ;
Lukaszewicz, G ;
Real, J .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (03) :484-498
[5]   PULLBACK ATTRACTORS FOR A NON-AUTONOMOUS SEMI-LINEAR DEGENERATE PARABOLIC EQUATION [J].
Cung The Anh ;
Tang Quoc Bao .
GLASGOW MATHEMATICAL JOURNAL, 2010, 52 :537-554
[6]   On the dynamics of a degenerate parabolic equation: global bifurcation of stationary states and convergence [J].
Karachalios, NI ;
Zographopoulos, NB .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2006, 25 (03) :361-393
[7]   Convergence towards attractors for a degenerate Ginzburg-Landau equation [J].
Karachalios, NI ;
Zographopoulos, NB .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2005, 56 (01) :11-30
[8]   Pullback attractors for the norm-to-weak continuous process and application to the nonautonomous reaction-diffusion equations [J].
Li, Yongjun ;
Zhong, Chengkui .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 190 (02) :1020-1029
[9]  
Li YJ, 2010, APPL MATH E-NOTES, V10, P19
[10]   On pullback attractors in Lp for nonautonomous reaction-diffusion equations [J].
Lukaszewicz, G. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (02) :350-357