Reduction number one for finitely generated torsion-free modules

被引:0
作者
Liu, JC [1 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
关键词
integral closure; reduction of an ideal; reduction of a module; reduction number; Rees algebra;
D O I
10.1080/00927879908826666
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (R, m) be a two-dimensional regular local ring and let A be a finitely generated torsion-free R-module. If A is a complete module, then Dan Katz and Vijay Kodiyalam show A satisfies five conditions. They ask whether these five conditions are equivalent without assuming A to be complete. In a previous paper we determined all implications among these five conditions with one exception. In this paper, with an additional hypothesis on the units of R, we resolve the remaining case.
引用
收藏
页码:3823 / 3831
页数:9
相关论文
共 5 条
[1]  
Artin M., 1991, Algebra
[2]   REDUCTION CRITERIA FOR MODULES [J].
KATZ, D .
COMMUNICATIONS IN ALGEBRA, 1995, 23 (12) :4543-4548
[3]   Symmetric powers of complete modules over a two-dimensional regular local ring [J].
Katz, D ;
Kodiyalam, V .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (02) :747-762
[4]   Rees algebras of finitely generated torsion-free modules over a two-dimensional regular local ring [J].
Liu, JC .
COMMUNICATIONS IN ALGEBRA, 1998, 26 (12) :4015-4039
[5]   REDUCTION OF MODULES [J].
REES, D .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1987, 101 :431-449