Pathwise Uniqueness and Non-explosion Property of Skorohod SDEs with a Class of Non-Lipschitz Coefficients and Non-smooth Domains

被引:4
作者
Hino, Masanori [1 ]
Matsuura, Kouhei [2 ]
Yonezawa, Misaki [3 ]
机构
[1] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
[2] Univ Tsukuba, Inst Math, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058571, Japan
[3] Daiwa Secur Co Ltd, Chiyoda Ku, Tokyo 1006752, Japan
关键词
Skorohod SDE; Non-Lipschitz coefficient; Pathwise uniqueness; Non-explosion property; STOCHASTIC DIFFERENTIAL-EQUATIONS;
D O I
10.1007/s10959-020-01036-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Here, we study stochastic differential equations with a reflecting boundary condition. We provide sufficient conditions for pathwise uniqueness and non-explosion property of solutions in a framework admitting non-Lipschitz continuous coefficients and non-smooth domains.
引用
收藏
页码:2166 / 2191
页数:26
相关论文
共 13 条
[1]   Wong-Zakai approximation of solutions to reflecting stochastic differential equations on domains in Euclidean spaces [J].
Aida, Shigeki ;
Sasaki, Kosuke .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (10) :3800-3827
[2]   ON PATHWISE UNIQUENESS FOR REFLECTING BROWNIAN MOTION IN C1+γ DOMAINS [J].
Bass, Richard F. ;
Burdzy, Krzysztof .
ANNALS OF PROBABILITY, 2008, 36 (06) :2311-2331
[3]   Strong comparison result for a class of reflected stochastic differential equations with non-Lipschitzian coefficients [J].
Bo L. ;
Yao R. .
Frontiers of Mathematics in China, 2007, 2 (1) :73-85
[4]   A study of a class of stochastic differential equations with non-Lipschitzian coefficients [J].
Fang, SZ ;
Zhang, TS .
PROBABILITY THEORY AND RELATED FIELDS, 2005, 132 (03) :356-390
[5]  
Fritz PK, 2010, CAMBRIDGE STUDIES AD
[6]   REAL VARIABLE LEMMA AND CONTINUITY OF PATHS OF SOME GAUSSIAN PROCESSES [J].
GARSIA, AM ;
RODEMICH, E ;
RUMSEY, H .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1970, 20 (06) :565-&
[7]  
[兰光强 Guang Qiang LAN], 2009, [数学学报, Acta Mathematica Sinica], V52, P731
[8]   STOCHASTIC DIFFERENTIAL-EQUATIONS WITH REFLECTING BOUNDARY-CONDITIONS [J].
LIONS, PL ;
SZNITMAN, AS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (04) :511-537
[9]   On stability and existence of solutions of SDEs with reflection at the boundary [J].
Rozkosz, A ;
Slominski, L .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1997, 68 (02) :285-302