Green's theorem for generalized fractional derivatives

被引:19
作者
Odzijewicz, Tatiana [1 ]
Malinowska, Agnieszka B. [2 ]
Torres, Delfim F. M. [1 ]
机构
[1] Univ Aveiro, Dept Math, Ctr Res & Dev Math & Applicat, P-3810193 Aveiro, Portugal
[2] Bialystok Tech Univ, Fac Comp Sci, PL-15351 Bialystok, Poland
关键词
fractional calculus; generalized operators; Green's theorem; CALCULUS;
D O I
10.2478/s13540-013-0005-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study three types of generalized partial fractional order operators. An extension of Green's theorem, by considering partial fractional derivatives with more general kernels, is proved. New results are obtained, even in the particular case when the generalized operators are reduced to the standard partial fractional derivatives and fractional integrals in the sense of Riemann-Liouville or Caputo.
引用
收藏
页码:64 / 75
页数:12
相关论文
共 18 条
[1]   Some generalized fractional calculus operators and their applications in integral equations [J].
Agrawal, Om P. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (04) :700-711
[2]   Generalized Variational Problems and Euler-Lagrange equations [J].
Agrawal, Om Prakash .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (05) :1852-1864
[3]   A fractional calculus of variations for multiple integrals with application to vibrating string [J].
Almeida, Ricardo ;
Malinowska, Agnieszka B. ;
Torres, Delfim F. M. .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (03)
[4]  
COLTON D., 2013, Inverse Acoustic and Electromagnetic Scattering Theory, V3rd, DOI [10.1007/978-1-4614-4942-3, DOI 10.1007/978-1-4614-4942-3, DOI 10.1007/978-3-662-03537-5]
[5]   Fractional embedding of differential operators and Lagrangian systems [J].
Cresson, Jacky .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (03)
[6]  
Emch G.G., 2002, LOGIC THERMOSTATICAL
[7]  
Kilbas AA., 2006, Theory and Applications of Fractional Differential Equations, V204, DOI DOI 10.1016/S0304-0208(06)80001-0
[8]  
Kiryakova V., 1994, Pitman Research Notes in Mathematics Series, V301
[9]  
Klimek M., 2009, On solutions of linear fractional dierential equations of a variational type
[10]  
Malinowska A. B., 2012, Introduction to the fractional calculus of variations