Second-kind integral solvers for TE and TM problems of diffraction by open arcs

被引:32
作者
Bruno, Oscar P. [1 ]
Lintner, Stephane K. [1 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
关键词
NUMERICAL-SOLUTION; SCATTERING; EQUATIONS; SCREEN; ALGORITHM; EXTERIOR;
D O I
10.1029/2012RS005035
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a novel approach for the numerical solution of problems of diffraction by open arcs in two dimensional space. Our methodology relies on composition of weighted versions of the classical integral operators associated with the Dirichlet and Neumann problems (TE and TM polarizations, respectively) together with a generalization to the open-arc case of the well known closed-surface Calderon formulae. When used in conjunction with spectrally accurate discretization rules and Krylov-subspace linear algebra solvers such as GMRES, the new second-kind TE and TM formulations for open arcs produce results of high accuracy in small numbers of iterations-for low and high frequencies alike. Citation: Bruno, O. P., and S. K. Lintner (2012), Second-kind integral solvers for TE and TM problems of diffraction by open arcs, Radio Sci., 47, RS6006, doi:10.1029/2012RS005035.
引用
收藏
页数:13
相关论文
共 35 条
[21]  
Mason J.C., 2003, Chebyshev polynomials, DOI 10.1201/9781420036114
[22]   *ZUR FORMULIERUNG EINES ALLGEMEINEN BEUGUNGS-PROBLEMS DURCH EINE INTEGRALGLEICHUNG [J].
MAUE, AW .
ZEITSCHRIFT FUR PHYSIK, 1949, 126 (7-9) :601-618
[23]  
MEIXNER J, 1949, ANN PHYS-BERLIN, V6, P2
[24]   NEW LOOK AT THIN-PLATE SCATTERING PROBLEM [J].
MITTRA, R ;
RAHMATSA.Y ;
JAMNEJAD, DV ;
DAVIS, WA .
RADIO SCIENCE, 1973, 8 (10) :869-875
[25]   On the numerical solution of the direct scattering problem for an open sound-hard arc [J].
Monch, L .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 71 (02) :343-356
[26]  
Povzner A.Y., 1960, Soviet Physics. Dokl, V4, P798
[27]  
Press W. H., 2002, NUMERICAL RECIPES C
[28]  
Rokhlin V., 1993, Applied and Computational Harmonic Analysis, V1, P82, DOI 10.1006/acha.1993.1006
[29]  
SAAD Y, 1986, SIAM J SCI STAT COMP, V7, P856, DOI 10.1137/0907058
[30]  
Saranen J., 2002, SPRINGER MG MATH