An 8 Mb Multi-Layered Cross-Point ReRAM Macro With 443 MB/s Write Throughput

被引:148
作者
Kawahara, Akifumi [1 ]
Azuma, Ryotaro [1 ]
Ikeda, Yuuichirou [1 ]
Kawai, Ken [1 ]
Katoh, Yoshikazu [1 ]
Hayakawa, Yukio [1 ]
Tsuji, Kiyotaka [1 ]
Yoneda, Shinichi [1 ]
Himeno, Atsushi [1 ]
Shimakawa, Kazuhiko [1 ]
Takagi, Takeshi [1 ]
Mikawa, Takumi [1 ]
Aono, Kunitoshi [1 ]
机构
[1] Panasonic Corp, Kyoto 6018413, Japan
关键词
ReRAM; multi-layer; cross-point; resistive memory element; bidirectional diode; short bitline structure; multi-bit write architecture; write dummy cell; error check and correct; write throughput;
D O I
10.1109/JSSC.2012.2215121
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An 8-Mb multi-layered cross-point resistive RAM (ReRAM) macro has been developed with 443 MB/s write throughput (64-bits parallel write per 17.2-ns cycle), which is almost twice as fast as competing methods. It uses the fast switching performance of TaOx ReRAM and a new write architecture to reduce the sneak current in a cross-point cell array structure based on an 0.18-mu m process. First, a bidirectional diode as a memory cell select element is developed to reduce the sneak current. Second, PMOS and NMOS are used select transistors in the source follower to realize stable switching for the selected cell in the multi-layered cross-point structure. Third, a hierarchical bitline (BL) structure is employed with a short bitline. Fourth, multi-bit write architecture is developed to realize fast write operation and to suppress the sneak current.
引用
收藏
页码:178 / 185
页数:8
相关论文
共 16 条
[1]   Determination of the parameters for the back-to-back switched Schottky barrier structures [J].
Ahmetoglu, M. ;
Akay, S. K. .
CURRENT APPLIED PHYSICS, 2010, 10 (02) :652-654
[2]  
Annunziata R, 2009, INT EL DEVICES MEET, P87
[3]  
Chevallier Christophe J., 2010, 2010 IEEE International Solid-State Circuits Conference (ISSCC), P260, DOI 10.1109/ISSCC.2010.5433945
[4]  
Fukuda K., 2011, 2011 IEEE International Solid-State Circuits Conference (ISSCC 2011), P198, DOI 10.1109/ISSCC.2011.5746280
[5]  
Hoeju Chung, 2011, 2011 IEEE International Solid-State Circuits Conference (ISSCC 2011), P500, DOI 10.1109/ISSCC.2011.5746415
[6]  
Iwata Y., 2006, P IEEE INT SOL STAT, P138
[7]   Novel Cross-point Resistive Switching Memory with Self-formed Schottky Barrier [J].
Jo, Minseok ;
Seong, Dong-jun ;
Kim, Seonghyun ;
Lee, Joonmyoung ;
Lee, Wootae ;
Park, Ju-Bong ;
Park, Sangsoo ;
Jung, Seungjae ;
Shin, Jungho ;
Lee, Daeseok ;
Hwang, Hyunsang .
2010 SYMPOSIUM ON VLSI TECHNOLOGY, DIGEST OF TECHNICAL PAPERS, 2010, :53-54
[8]   2-stack 1D-1R cross-point structure with oxide diodes as switch elements for high density resistance RAM applications [J].
Lee, Myoung-Jae ;
Park, Youngsoo ;
Kang, Bo-Soo ;
Ahn, Seung-Eon ;
Lee, Changbum ;
Kim, Kihwan ;
Xianyu, Wenxu ;
Stefanovich, G. ;
Lee, Jung-Hyun ;
Chung, Seok-Jae ;
Kim, Yeon-Hee ;
Lee, Chang-Soo ;
Park, Jong-Bong ;
Baek, In-Gyu ;
Yoo, In-Kyeong .
2007 IEEE INTERNATIONAL ELECTRON DEVICES MEETING, VOLS 1 AND 2, 2007, :771-+
[9]  
Otsuka W., 2011, 2011 IEEE International Solid-State Circuits Conference (ISSCC 2011), P210, DOI 10.1109/ISSCC.2011.5746286
[10]  
Sasago Y, 2009, 2009 SYMPOSIUM ON VLSI TECHNOLOGY, DIGEST OF TECHNICAL PAPERS, P24