Quadratic polynomials represented by norm forms

被引:14
作者
Browning, T. D. [1 ]
Heath-Brown, D. R. [2 ]
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
[2] Univ Oxford, Inst Math, Oxford OX1 3LB, England
基金
英国工程与自然科学研究理事会;
关键词
POINTS; NUMBER; BRAUER;
D O I
10.1007/s00039-012-0168-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let P(t) is an element of Q[t] be an irreducible quadratic polynomial and suppose that K is a quartic extension of Q containing the roots of P(t). Let N-K/Q(x)be a full norm form for the K/Q extension. We show that the variety P(t) = N-K/Q(x) not equal 0 satisfies the Hasse principle and weak approximation. The proof uses analytic methods.
引用
收藏
页码:1124 / 1190
页数:67
相关论文
共 25 条
[1]  
[Anonymous], ANN MATH IN PRESS
[2]   THE ARITHMETIC OF DIEDER GROUP EXPANSIONS [J].
BARTELS, HJ .
MATHEMATISCHE ANNALEN, 1981, 256 (04) :465-473
[3]   ARITHMETIC OF CONJUGATION CLASSES IN ALGEBRAIC-GROUPS [J].
BARTELS, HJ .
JOURNAL OF ALGEBRA, 1981, 70 (01) :179-199
[4]  
Brudern J, 2009, BINARY ADDITIVE PROB, P91
[5]  
Colliot-Thelene J.-L., 2003, London Math. Soc. Lecture Note Ser., V303, P69
[6]   Descent on fibrations over Pk1 revisited [J].
Colliot-Thélène, JL ;
Skorobogatov, AN .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2000, 128 :383-393
[7]  
Colliot-Thelene JL, 1998, J REINE ANGEW MATH, V495, P1
[8]  
COLLIOTTHELENE JL, 1989, P LOND MATH SOC, V58, P519
[9]  
COLLIOTTHELENE JL, 1994, J REINE ANGEW MATH, V453, P49
[10]  
COLLIOTTHELENE JL, 1977, ANN SCI ECOLE NORM S, V10, P175