Precise asymptotics of complete moment convergence on moving average

被引:2
作者
Lin, Zheng Yan [1 ]
Zhou, Hui [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
基金
美国国家科学基金会;
关键词
Moving-average process; phi-mixing sequence; complete convergence; precise asymptotics; PHI-MIXING ASSUMPTION; DEVIATIONS; RATES;
D O I
10.1007/s10114-012-0355-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {xi(i),-infinity < i < infinity} be a doubly infinite sequence of identically distributed phi-mixing random variables with zero means and finite variances, {a(i),-infinity < i < infinity} be an absolutely summable sequence of real numbers and X-k = Sigma(+infinity)(i=-infinity) a(i)xi(i+k) be a moving average process. Under some proper moment conditions, the precise asymptotics are established for (lim)(epsilon SE arrow 0)1/-log epsilon Sigma(infinity)(n=1)1/n(2)ES(n)(2)I{vertical bar S-n vertical bar >= n epsilon}=2EZ(2). where Z similar to N(0,tau(2)), tau(2) = sigma(2) (Sigma(infinity)(i=-infinity) a(i))(2), and (lim)(epsilon SE arrow 0) epsilon(2 delta) Sigma(infinity)(n=2)(log n)(delta-1)/n(2)ES(n)(2)I{vertical bar S-n vertical bar >=root n log n epsilon} = tau(2 delta+2)/delta E vertical bar N vertical bar(2 delta+2).
引用
收藏
页码:2507 / 2526
页数:20
相关论文
共 15 条
[1]   LARGE DEVIATIONS FOR SOME WEAKLY DEPENDENT RANDOM-PROCESSES [J].
BURTON, RM ;
DEHLING, H .
STATISTICS & PROBABILITY LETTERS, 1990, 9 (05) :397-401
[2]   Convergence rates for probabilities of moderate deviations for moving average processes [J].
Chen, Ping Yan ;
Wang, Ding Cheng .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (04) :611-622
[3]   Limiting behaviour of moving average processes under φ-mixing assumption [J].
Chen, Pingyan ;
Hu, Tien-Chung ;
Volodin, Andrei .
STATISTICS & PROBABILITY LETTERS, 2009, 79 (01) :105-111
[4]   COMPLETE CONVERGENCE AND THE LAW OF LARGE NUMBERS [J].
HSU, PL ;
ROBBINS, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1947, 33 (02) :25-31
[5]   A central limit theorem for stationary linear processes generated by linearly positively quadrant-dependent process [J].
Kim, TS ;
Baek, JI .
STATISTICS & PROBABILITY LETTERS, 2001, 51 (03) :299-305
[6]   COMPLETE CONVERGENCE OF MOVING AVERAGE PROCESSES [J].
LI, DL ;
RAO, MB ;
WANG, XC .
STATISTICS & PROBABILITY LETTERS, 1992, 14 (02) :111-114
[7]   PRECISE ASYMPTOTICS OF MOVING AVERAGE PROCESS UNDER φ-MIXING ASSUMPTION [J].
Li, Jie .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (02) :235-249
[8]  
[李云霞 Li Yunxia], 2006, [数学物理学报. A辑, Acta Mathematica Scientia], V26, P675
[9]   Precise asymptotics in the law of the iterated logarithm of moving-average processes [J].
Li, YX ;
Zhang, LX .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (01) :143-156
[10]   Precise asymptotics for a new kind of complete moment convergence [J].
Liu, Weidong ;
Lin, Zhengyan .
STATISTICS & PROBABILITY LETTERS, 2006, 76 (16) :1787-1799