Error estimates for generalized barycentric interpolation

被引:52
|
作者
Gillette, Andrew [2 ]
Rand, Alexander
Bajaj, Chandrajit [1 ]
机构
[1] Univ Texas Austin, Dept Comp Sci, Inst Computat Engn & Sci, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
关键词
Barycentric coordinates; Interpolation; Finite element method; FINITE-ELEMENTS; POLYNOMIAL-APPROXIMATION; CONSTRUCTION; DEGENERATE; SPACES;
D O I
10.1007/s10444-011-9218-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the optimal convergence estimate for first-order interpolants used in finite element methods based on three major approaches for generalizing barycentric interpolation functions to convex planar polygonal domains. The Wachspress approach explicitly constructs rational functions, the Sibson approach uses Voronoi diagrams on the vertices of the polygon to define the functions, and the Harmonic approach defines the functions as the solution of a PDE. We show that given certain conditions on the geometry of the polygon, each of these constructions can obtain the optimal convergence estimate. In particular, we show that the well-known maximum interior angle condition required for interpolants over triangles is still required for Wachspress functions but not for Sibson functions.
引用
收藏
页码:417 / 439
页数:23
相关论文
共 50 条