Error estimates for generalized barycentric interpolation

被引:52
|
作者
Gillette, Andrew [2 ]
Rand, Alexander
Bajaj, Chandrajit [1 ]
机构
[1] Univ Texas Austin, Dept Comp Sci, Inst Computat Engn & Sci, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
关键词
Barycentric coordinates; Interpolation; Finite element method; FINITE-ELEMENTS; POLYNOMIAL-APPROXIMATION; CONSTRUCTION; DEGENERATE; SPACES;
D O I
10.1007/s10444-011-9218-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the optimal convergence estimate for first-order interpolants used in finite element methods based on three major approaches for generalizing barycentric interpolation functions to convex planar polygonal domains. The Wachspress approach explicitly constructs rational functions, the Sibson approach uses Voronoi diagrams on the vertices of the polygon to define the functions, and the Harmonic approach defines the functions as the solution of a PDE. We show that given certain conditions on the geometry of the polygon, each of these constructions can obtain the optimal convergence estimate. In particular, we show that the well-known maximum interior angle condition required for interpolants over triangles is still required for Wachspress functions but not for Sibson functions.
引用
收藏
页码:417 / 439
页数:23
相关论文
共 50 条
  • [1] Error estimates for generalized barycentric interpolation
    Andrew Gillette
    Alexander Rand
    Chandrajit Bajaj
    Advances in Computational Mathematics, 2012, 37 : 417 - 439
  • [2] Interpolation error estimates for mean value coordinates over convex polygons
    Rand, Alexander
    Gillette, Andrew
    Bajaj, Chandrajit
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2013, 39 (02) : 327 - 347
  • [3] Generalized barycentric coordinates and applications
    Floater, Michael S.
    ACTA NUMERICA, 2015, 24 : 161 - 214
  • [4] INTERPOLATION ERROR ESTIMATES FOR HARMONIC COORDINATES ON POLYTOPES
    Gillette, Andrew
    Rand, Alexander
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2016, 50 (03) : 651 - 676
  • [5] Interpolation error estimates for mean value coordinates over convex polygons
    Alexander Rand
    Andrew Gillette
    Chandrajit Bajaj
    Advances in Computational Mathematics, 2013, 39 : 327 - 347
  • [6] Lp ERROR ESTIMATES FOR SCATTERED DATA INTERPOLATION ON SPHERES
    Cao, Feilong
    Guo, Xiaofei
    Lin, Shaobo
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2011, 32 (12) : 1205 - 1218
  • [7] Error Estimates for the Cardinal Spline Interpolation
    Vainikko, Gennadi
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2009, 28 (02): : 205 - 222
  • [8] Barycentric Lagrange interpolation
    Berrut, JP
    Trefethen, LN
    SIAM REVIEW, 2004, 46 (03) : 501 - 517
  • [9] BARYCENTRIC HERMITE INTERPOLATION
    Sadiq, Burhan
    Viswanath, Divakar
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (03) : A1254 - A1270
  • [10] A priori error estimates for Lagrange interpolation on triangles
    Kenta Kobayashi
    Takuya Tsuchiya
    Applications of Mathematics, 2015, 60 : 485 - 499