The number of rational curves on K3 surfaces

被引:0
作者
Wu, Baosen [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
rational curve; K3; surface; stable sheaf; Euler number;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a K3 surface with a primitive ample divisor H, and let beta = 2[H] is an element of H-2 (X, Z). We calculate the Gromov-Witten type invariants n(beta) by virtue of Enter numbers of some moduli spaces of stable sheaves. Eventually, it verifies Yau-Zaslow formula in the non primitive class beta.
引用
收藏
页码:635 / 650
页数:16
相关论文
共 19 条
[1]   Counting rational curves on K3 surfaces [J].
Beauville, A .
DUKE MATHEMATICAL JOURNAL, 1999, 97 (01) :99-108
[2]   The enumerative geometry of K3 surfaces and modular forms [J].
Bryan, J ;
Leung, NC .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 13 (02) :371-410
[3]   A simple proof that rational curves on K3 are nodal [J].
Chen, X .
MATHEMATISCHE ANNALEN, 2002, 324 (01) :71-104
[4]  
CHEN XS, COMMUNICATION
[5]  
Fantechi B, 1999, J ALGEBRAIC GEOM, V8, P115
[6]  
GATHMANN A, MATHAG0202002
[7]  
Hartshorne R., 1977, ALGEBRAIC GEOMETRY
[8]  
Huybrechts D, 1997, GEOMETRY MODULI SPAC
[9]   Yau-Zaslow formula on K3 surfaces for non-primitive classes [J].
Lee, J ;
Leung, NC .
GEOMETRY & TOPOLOGY, 2005, 9 :1977-2012
[10]   Counting elliptic curves in K3 surfaces [J].
Lee, Junho ;
Leung, Naichung Conan .
JOURNAL OF ALGEBRAIC GEOMETRY, 2006, 15 (04) :591-601