Convergence to the viscous porous medium equation and propagation of chaos

被引:0
|
作者
Figalli, Alessio [1 ]
Philipowski, Robert [2 ]
机构
[1] Univ Nice Sophia Antipolis, Lab JA Dieudonne, CNRS, UMR 6621, F-06108 Nice 02, France
[2] Ecole Normale Super Lyon, Unite Math Pures & Appl, F-69364 Lyon 07, France
关键词
Nonlinear stochastic differential equations; Viscous porous medium equation; Interacting particle systems;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a sequence of nonlinear stochastic differential equations and show that the distributions of the solutions converge to the solution of the viscous porous medium equation with exponent m > 1, generalizing the results of Oelschlager (2001) and Philipowski (2006) which concern the case m = 2. Furthermore we explain how to apply this result to the study of interacting particle systems.
引用
收藏
页码:185 / 203
页数:19
相关论文
共 50 条
  • [21] PROPAGATION OF CHAOS AND THE BURGERS-EQUATION
    GUTKIN, E
    KAC, M
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1983, 43 (04) : 971 - 980
  • [22] HODOGRAPHIC VISCOUS FLOWS IN POROUS MEDIUM
    Siddiqui, A. M.
    Haroon, Tahira
    Kahshan, Mohammad
    Mohyuddin, Muhammad R.
    JOURNAL OF POROUS MEDIA, 2011, 14 (08) : 735 - 742
  • [23] Viscous fingering in a rotating porous medium
    Saghir, MZ
    Vaziri, HH
    Islam, MR
    PROCESSING BY CENTRIFUGATION, 2001, : 303 - 316
  • [24] Propagation of acoustic wave and analysis of borehole acoustic field in porous medium of heterogeneous viscous fluid
    Peng, Fan
    Zhang, Xiu-Mei
    Liu, Lin
    Wang, Xiu-Ming
    ACTA PHYSICA SINICA, 2023, 72 (05)
  • [25] Flame propagation in a porous medium
    Ghazaryan, Anna
    Lafortune, Stephane
    Linhart, Choral
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 413
  • [26] A two-equation model for thermally developing forced convection in porous medium with viscous dissipation
    Chen, G. M.
    Tso, C. P.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2011, 54 (25-26) : 5406 - 5414
  • [27] On the stochastic porous medium equation
    Kim, JU
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 220 (01) : 163 - 194
  • [28] A fractional porous medium equation
    de Pablo, Arturo
    Quiros, Fernando
    Rodriguez, Ana
    Luis Vazquez, Juan
    ADVANCES IN MATHEMATICS, 2011, 226 (02) : 1378 - 1409
  • [29] Porous medium equation with absorption
    Bandle, C
    Nanbu, T
    Stakgold, I
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (05) : 1268 - 1278
  • [30] ON A REGULARIZED POROUS MEDIUM EQUATION
    Coclite, Giuseppe Maria
    Di Ruvo, Lorenzo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, 17 (5-6): : 1876 - 1888