Plant-Derived Polyphenols Modulate Human Dendritic Cell Metabolism and Immune Function via AMPK-Dependent Induction of Heme Oxygenase-1

被引:42
|
作者
Campbell, Nicole K.
Fitzgerald, Hannah K.
Fletcher, Jean M.
Dunne, Aisling [1 ]
机构
[1] Univ Dublin, Sch Biochem & Immunol, Trinity Coll Dublin, Trinity Biomed Sci Inst, Dublin, Ireland
来源
FRONTIERS IN IMMUNOLOGY | 2019年 / 10卷
关键词
polyphenols; immunometabolism; dendritic cells; AMPK; HO-1 (heme oxygenase-1); GENE-EXPRESSION; GUT MICROBIOTA; NITRIC-OXIDE; CURCUMIN; PROTEIN; MACROPHAGES; SUPPRESSION; ACTIVATION; INHIBITION; SYNTHASE;
D O I
10.3389/fimmu.2019.00345
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Polyphenols are important immunonutrients which have been investigated in the context of inflammatory and autoimmune disease due to their significant immunosuppressive properties. However, the mechanism of action of many polyphenols is unclear, particularly in human immune cells. The emerging field of immunometabolism has highlighted the significance of metabolic function in the regulation of immune cell activity, yet the effects of polyphenols on immune cell metabolic signaling and function has not been explored. We have investigated the effects of two plant-derived polyphenols, carnosol and curcumin, on the metabolism of primary human dendritic cells (DC). We report that human DC display an increase in glycolysis and spare respiratory capacity in response to LPS stimulation, which was attenuated by both carnosol and curcumin treatment. The regulation of DC metabolism by these polyphenols appeared to be mediated by their activation of the cellular energy sensor, AMP-activated Protein Kinase (AMPK), which resulted in the inhibition of mTOR signaling in LPS-stimulated DC. Previously we have reported that both carnosol and curcumin can regulate the maturation and function of human DC through upregulation of the immunomodulatory enzyme, Heme Oxygenase-1 (HO-1). Here we also demonstrate that the induction of HO-1 by polyphenols in human DC is dependent on their activation of AMPK. Moreover, pharmacological inhibition of AMPK was found to reverse the observed reduction of DC maturation by carnosol and curcumin. This study therefore describes a novel relationship between metabolic signaling via AMPK and HO-1 induction by carnosol and curcumin in human DC, and characterizes the effects of these polyphenols on DC immunometabolism for the first time. These results expand our understanding of the mechanism of action of carnosol and curcumin in human immune cells, and suggest that polyphenol supplementation may be useful to regulate the metabolism and function of immune cells in inflammatory and metabolic disease.
引用
收藏
页数:13
相关论文
共 3 条
  • [1] Tussilagone inhibits dendritic cell functions via induction of heme oxygenase-1
    Park, Yunsoo
    Ryu, Hwa Sun
    Lee, Hong Kyung
    Kim, Ji Sung
    Yun, Jieun
    Kang, Jong Soon
    Hwang, Bang Yeon
    Hong, Jin Tae
    Kim, Youngsoo
    Han, Sang-Bae
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2014, 22 (02) : 400 - 408
  • [2] Miltirone protects human EA.hy926 endothelial cells from oxidized low-density lipoprotein-derived oxidative stress via a heme oxygenase-1 and MAPK/Nrf2 dependent pathway
    Zhang, Liu
    Zhang, Hui
    Li, Xueyan
    Jia, Bingjie
    Yang, Yuyu
    Zhou, Ping
    Li, Ping
    Chen, Jun
    PHYTOMEDICINE, 2016, 23 (14) : 1806 - 1813
  • [3] 5,8-Dihydroxy-4' , 7-dimethoxyflavone Attenuates TNF-a-Induced Expression of Vascular Cell Adhesion Molecule-1 through EGFR/PKCa/PI3K/Akt/Sp1-Dependent Induction of Heme Oxygenase-1 in Human Cardiac Fibroblasts
    Yang, Chien-Chung
    Hsiao, Li-Der
    Shih, Ya-Fang
    Lin, Hsin-Hui
    Yang, Chuen-Mao
    OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2022, 2022