Proto-object categorisation and local gist vision using low-level spatial features

被引:2
作者
Martins, Jaime A. [1 ,3 ]
Rodrigues, J. M. F. [2 ,3 ]
du Buf, J. M. H. [1 ,3 ]
机构
[1] FCT, Vis Lab, Larsys, Portugal
[2] ISE, Vis Lab, Larsys, Portugal
[3] Univ Algarve, Faro, Portugal
关键词
Disparity; 3D; Stereo vision; Colour; Population coding; Learning; Biological model; Figure-ground; Segregation; Object; Categorisation; Verification; Neural network; Visual cortex; MODEL; RECOGNITION; PERCEPTION; SCENE; DEPTH; SHAPE;
D O I
10.1016/j.biosystems.2015.07.001
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Object categorisation is a research area with significant challenges, especially in conditions with bad lighting, occlusions, different poses and similar objects. This makes systems that rely on precise information unable to perform efficiently, like a robotic arm that needs to know which objects it can reach. We propose a biologically inspired object detection and categorisation framework that relies on robust low-level object shape. Using only edge conspicuity and disparity features for scene figure-ground segregation and object categorisation, a trained neural network classifier can quickly categorise broad object families and consequently bootstrap a low-level scene gist system. We argue that similar processing is possibly located in the parietal pathway leading to the LIP cortex and, via areas V5/MT and MST, providing useful information to the superior colliculus for eye and head control. (C) 2015 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:35 / 49
页数:15
相关论文
共 42 条
  • [1] [Anonymous], 2012, P 26 ANN C NEUR PROC, DOI DOI 10.1002/2014GB005021
  • [2] Top-down facilitation of visual recognition
    Bar, M
    Kassam, KS
    Ghuman, AS
    Boshyan, J
    Schmidt, AM
    Dale, AM
    Hämäläinen, MS
    Marinkovic, K
    Schacter, DL
    Rosen, BR
    Halgren, E
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (02) : 449 - 454
  • [3] Visual objects in context
    Bar, M
    [J]. NATURE REVIEWS NEUROSCIENCE, 2004, 5 (08) : 617 - 629
  • [4] Neurocomputational bases of object and face recognition
    Biederman, I
    Kalocsai, P
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES B-BIOLOGICAL SCIENCES, 1997, 352 (1358) : 1203 - 1219
  • [5] Blum M, 2012, IEEE INT CONF ROBOT, P1298, DOI 10.1109/ICRA.2012.6225188
  • [6] Bo L., 2013, EXPT ROBOTICS, P387, DOI DOI 10.1007/978-3-319-00065-7
  • [7] Bo LF, 2011, IEEE INT C INT ROBOT, P821, DOI 10.1109/IROS.2011.6048717
  • [8] A neural model of figure-ground organization
    Craft, Edward
    Schuetze, Hartmut
    Niebur, Ernst
    von der Heydt, Ruediger
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 2007, 97 (06) : 4310 - 4326
  • [9] Davies E., 2004, Pattern Recognit. Lett.
  • [10] How Does the Brain Solve Visual Object Recognition?
    DiCarlo, James J.
    Zoccolan, Davide
    Rust, Nicole C.
    [J]. NEURON, 2012, 73 (03) : 415 - 434