SLICED INVERSE REGRESSION IN METRIC SPACES

被引:3
作者
Virta, Joni [1 ]
Lee, Kuang-Yao [2 ,4 ]
Li, Lexin [3 ]
机构
[1] Univ Turku, Dept Math & Stat, FI-20014 Turku Yliopisto, Finland
[2] Temple Univ, Dept Stat Sci, Philadelphia, PA 19122 USA
[3] Univ Calif Berkeley, Sch Publ Hlth, Berkeley, CA 94720 USA
[4] Temple Univ, Dept Stat Sci, Philadelphia, PA 19122 USA
基金
芬兰科学院;
关键词
Covariance operator; metric space; reproducing kernel Hilbert space; sliced inverse regression; sufficient dimension reduction; SUFFICIENT DIMENSION REDUCTION;
D O I
10.5705/ss.202022.0097
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we propose a general nonlinear sufficient dimension reduc-tion (SDR) framework when both the predictor and the response lie in some general metric spaces. We construct reproducing kernel Hilbert spaces with kernels that are fully determined by the distance functions of the metric spaces, and then leverage the inherent structures of these spaces to define a nonlinear SDR framework. We adapt the classical sliced inverse regression within this framework for the metric space data. Next we build an estimator based on the corresponding linear opera-tors, and show that it recovers the regression information in an unbiased manner. We derive the estimator at both the operator level and under a coordinate system, and establish its convergence rate. Lastly, we illustrate the proposed method using synthetic and real data sets that exhibit non-Euclidean geometry.
引用
收藏
页码:2315 / 2337
页数:23
相关论文
共 44 条
  • [1] COOK RD, 1991, J AM STAT ASSOC, V86, P328, DOI 10.2307/2290564
  • [2] Dimension reduction for conditional mean in regression
    Cook, RD
    Bing, L
    [J]. ANNALS OF STATISTICS, 2002, 30 (02) : 455 - 474
  • [3] Cornea E, 2017, J ROY STAT SOC B, V79, P463, DOI 10.1111/rssb.12169
  • [4] The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism
    Di Martino, A.
    Yan, C-G
    Li, Q.
    Denio, E.
    Castellanos, F. X.
    Alaerts, K.
    Anderson, J. S.
    Assaf, M.
    Bookheimer, S. Y.
    Dapretto, M.
    Deen, B.
    Delmonte, S.
    Dinstein, I.
    Ertl-Wagner, B.
    Fair, D. A.
    Gallagher, L.
    Kennedy, D. P.
    Keown, C. L.
    Keysers, C.
    Lainhart, J. E.
    Lord, C.
    Luna, B.
    Menon, V.
    Minshew, N. J.
    Monk, C. S.
    Mueller, S.
    Mueller, R. A.
    Nebel, M. B.
    Nigg, J. T.
    O'Hearn, K.
    Pelphrey, K. A.
    Peltier, S. J.
    Rudie, J. D.
    Sunaert, S.
    Thioux, M.
    Tyszka, J. M.
    Uddin, L. Q.
    Verhoeven, J. S.
    Wenderoth, N.
    Wiggins, J. L.
    Mostofsky, S. H.
    Milham, M. P.
    [J]. MOLECULAR PSYCHIATRY, 2014, 19 (06) : 659 - 667
  • [6] Frechet analysis of variance for random objects
    Dubey, Paromita
    Mueller, Hans-Georg
    [J]. BIOMETRIKA, 2019, 106 (04) : 803 - 821
  • [7] Fox MD, 2010, FRONT SYST NEUROSCI, V4, DOI [10.3389/fnsys.2010.0001, 10.3389/fnsys.2010.00019]
  • [8] Fukumizu K, 2004, J MACH LEARN RES, V5, P73
  • [9] KERNEL DIMENSION REDUCTION IN REGRESSION
    Fukumizu, Kenji
    Bach, Francis R.
    Jordan, Michael I.
    [J]. ANNALS OF STATISTICS, 2009, 37 (04) : 1871 - 1905
  • [10] Intestinal Microbiota Distinguish Gout Patients from Healthy Humans
    Guo, Zhuang
    Zhang, Jiachao
    Wang, Zhanli
    Ang, Kay Ying
    Huang, Shi
    Hou, Qiangchuan
    Su, Xiaoquan
    Qiao, Jianmin
    Zheng, Yi
    Wang, Lifeng
    Koh, Eileen
    Ho Danliang
    Xu, Jian
    Lee, Yuan Kun
    Zhang, Heping
    [J]. SCIENTIFIC REPORTS, 2016, 6