Terahertz Superconducting Radiometric Spectrometer in Tibet for Atmospheric Science

被引:5
作者
Li, Sheng [1 ,2 ]
Yao, Qijun [1 ,2 ]
Liu, Dong [1 ,2 ]
Duan, Wenying [1 ,2 ]
Zhang, Kun [1 ,2 ,3 ]
Jin, Junda [1 ,2 ,3 ]
Lin, Zhenhui [1 ,2 ,3 ]
Wu, Feng [1 ,2 ]
Yang, Jinping [1 ,2 ]
Miao, Wei [1 ,2 ]
Shi, Shengcai [1 ,2 ]
机构
[1] Chinese Acad Sci, Purple Mt Observ, 8 Yuanhua Rd, Nanjing 210034, Jiangsu, Peoples R China
[2] Chinese Acad Sci, Key Lab Radio Astron, Nanjing, Jiangsu, Peoples R China
[3] Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Terahertz; Superconducting; Heterodyne receiver; Molecular emission lines; TRANSMISSION; NOISE;
D O I
10.1007/s10762-018-0557-4
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Terahertz superconducting radiometric spectrometer (TSRS), as one of seven instruments of the atmospheric profiling synthetic observation system (APSOS) project, was completed in the middle of 2017 after 5 years of development. It is a dual-band heterodyne receiver system based on high sensitive superconductor-insulator-superconductor (SIS) mixers which cover the frequency range of 180 to 380 GHz. With fast Fourier transform spectrometer (FFTS) of each band, real-time observation of 2 GHz bandwidth of high spectral resolution atmospheric molecular emission lines has been demonstrated. TSRS has been deployed at Yangbajing site, which stands on the Qinghai-Tibet Plateau at an altitude of 4300 m in southwestern China, since October 2017. It has been worked in a preliminary observation phase along with other active observation equipment of APSOS. Since then, ozone emission lines around 236 GHz and 358 GHz have been monitored simultaneously. Achieved data will be used to retrieve the in situ vertical distribution of ozone and its movement among different layers of the atmosphere.
引用
收藏
页码:166 / 177
页数:12
相关论文
共 16 条
[1]  
[Anonymous], 1996, Digital signal processing
[2]   A Low-Noise Terahertz SIS Mixer Incorporating a Waveguide Directional Coupler for LO Injection [J].
Kojima, Takafumi ;
Kuroiwa, Kouichi ;
Uzawa, Yoshinori ;
Kroug, Matthias ;
Takeda, Masanori ;
Fujii, Yasunori ;
Kaneko, Keiko ;
Miyachi, Akihira ;
Wang, Zhen ;
Ogawa, Hideo .
JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2010, 31 (11) :1321-1330
[3]   Noise stability of SIS receivers [J].
Kooi, JW ;
Chattopadhyay, G ;
Thielman, M ;
Phillips, TG ;
Schieder, R .
INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES, 2000, 21 (05) :689-716
[4]   Atmospheric Profiling Synthetic Observation System in Tibet [J].
Lu, Daren ;
Pan, Weilin ;
Wang, Yinan .
ADVANCES IN ATMOSPHERIC SCIENCES, 2018, 35 (03) :264-267
[5]  
MURK A, 1999, TECH MET WORKSH DEC, P42
[6]   AN SIS MIXER USING 2 JUNCTIONS CONNECTED IN PARALLEL [J].
NOGUCHI, T ;
SHI, SC ;
INATANI, J .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 1995, 5 (02) :2228-2231
[7]  
Paine S., 2018, 152 SUBM ARR
[8]   Atmospheric transmission at microwaves (ATM): An improved model for millimeter/submillimeter applications [J].
Pardo, JR ;
Cernicharo, J ;
Serabyn, E .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2001, 49 (12) :1683-1694
[9]  
Phillips T. G., 1992, P IEEE, V96, P287
[10]   The HITRAN 2008 molecular spectroscopic database [J].
Rothman, L. S. ;
Gordon, I. E. ;
Barbe, A. ;
Benner, D. Chris ;
Bernath, P. E. ;
Birk, M. ;
Boudon, V. ;
Brown, L. R. ;
Campargue, A. ;
Champion, J. -P. ;
Chance, K. ;
Coudert, L. H. ;
Dana, V. ;
Devi, V. M. ;
Fally, S. ;
Flaud, J. -M. ;
Gamache, R. R. ;
Goldman, A. ;
Jacquemart, D. ;
Kleiner, I. ;
Lacome, N. ;
Lafferty, W. J. ;
Mandin, J. -Y. ;
Massie, S. T. ;
Mikhailenko, S. N. ;
Miller, C. E. ;
Moazzen-Ahmadi, N. ;
Naumenko, O. V. ;
Nikitin, A. V. ;
Orphal, J. ;
Perevalov, V. I. ;
Perrin, A. ;
Predoi-Cross, A. ;
Rinsland, C. P. ;
Rotger, M. ;
Simeckova, M. ;
Smith, M. A. H. ;
Sung, K. ;
Tashkun, S. A. ;
Tennyson, J. ;
Toth, R. A. ;
Vandaele, A. C. ;
Vander Auwera, J. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2009, 110 (9-10) :533-572