Saddle-node bifurcation of viscous profiles

被引:5
|
作者
Achleitner, Franz [1 ]
Szmolyan, Peter [1 ]
机构
[1] Vienna Univ Technol, Inst Anal & Sci Comp, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
Viscous conservation law; Traveling wave; Bifurcation; Spectral stability; Evans function; EXPONENTIAL DICHOTOMIES; SPECTRAL STABILITY; HOPF-BIFURCATION; SHOCK PROFILES; EVANS FUNCTION; WAVE SOLUTIONS; INSTABILITY; ORBITS;
D O I
10.1016/j.physd.2012.06.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Traveling wave solutions of viscous conservation laws, that are associated to Lax shocks of the inviscid equation, have generically a transversal viscous profile. In the case of a non-transversal viscous profile we show by using Melnikov theory that a parametrized perturbation of the profile equation leads generically to a saddle-node bifurcation of these solutions. An example of this bifurcation in the context of magnetohydrodynamics is given. The spectral stability of the traveling waves generated in the saddle-node bifurcation is studied via an Evans function approach. It is shown that generically one real eigenvalue of the linearization of the viscous conservation law around the parametrized family of traveling waves changes its sign at the bifurcation point. Hence this bifurcation describes the basic mechanism of a stable traveling wave which becomes unstable in a saddle-node bifurcation. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1703 / 1717
页数:15
相关论文
共 50 条
  • [1] Shilnikov's saddle-node bifurcation
    Glendinning, P
    Sparrow, C
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (06): : 1153 - 1160
  • [2] A DOUBLE SADDLE-NODE BIFURCATION THEOREM
    Liu, Ping
    Shi, Junping
    Wang, Yuwen
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (06) : 2923 - 2933
  • [3] On saddle-node bifurcation and chaos of satellites
    Beda, PB
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (08) : 4881 - 4886
  • [4] Excitability in a model with a saddle-node homoclinic bifurcation
    Dilao, R
    Volford, A
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2004, 4 (02): : 419 - 434
  • [5] Discontinuous impedance near a saddle-node bifurcation
    Berthier, F
    Diard, JP
    Montella, C
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1996, 410 (02): : 247 - 249
  • [6] THE SADDLE-NODE SEPARATRIX-LOOP BIFURCATION
    SCHECTER, S
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (04) : 1142 - 1156
  • [7] Saddle-Node Bifurcation Leading to Survival Mosquitoes
    Franco-Perez, L.
    Nunez-Lopez, M.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2025, 35 (04):
  • [8] BREAKING OF SYMMETRY IN THE SADDLE-NODE HOPF-BIFURCATION
    KIRK, V
    PHYSICS LETTERS A, 1991, 154 (5-6) : 243 - 248
  • [9] BASIN ORGANIZATION PRIOR TO A TANGLED SADDLE-NODE BIFURCATION
    Soliman, Mohamed S.
    Thompson, J. M. T.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1991, 1 (01): : 107 - 118
  • [10] Saddle-node bifurcation of voltage profiles of small integrated AC/DC power systems
    Fan, YK
    Niebur, D
    Nwankpa, CO
    Kwatny, H
    Fischl, R
    2000 IEEE POWER ENGINEERING SOCIETY SUMMER MEETING, CONFERENCE PROCEEDINGS, VOLS 1-4, 2000, : 614 - 619