TGF-β and αvβ6 Integrin Act in a Common Pathway to Suppress Pancreatic Cancer Progression

被引:83
作者
Hezel, Aram F. [1 ,3 ]
Deshpande, Vikram [1 ]
Zimmerman, Stephanie M. [1 ]
Contino, Gianmarco [1 ]
Alagesan, Brinda [1 ]
O'Dell, Michael R. [3 ]
Rivera, Lee B. [4 ]
Harper, Jay [2 ]
Lonning, Scott [2 ]
Brekken, Rolf A. [4 ]
Bardeesy, Nabeel [1 ]
机构
[1] Harvard Univ, Massachusetts Gen Hosp, Sch Med, Boston, MA 02114 USA
[2] Genzyme Corp, Framingham, MA 01701 USA
[3] Univ Rochester, Sch Med, James P Wilmot Canc Ctr, Rochester, NY USA
[4] Univ Texas SW Med Ctr Dallas, Hamon Ctr Therapeut Oncol Res, Dallas, TX 75390 USA
关键词
GROWTH-FACTOR-BETA; INHIBITION; EXPRESSION; MICE; ADENOCARCINOMA; BLOCKADE; BIOLOGY;
D O I
10.1158/0008-5472.CAN-12-0634
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The TGF-beta pathway is under active consideration as a cancer drug target based on its capacity to promote cancer cell invasion and to create a protumorigenic microenvironment. However, the clinical application of TGF-beta inhibitors remains uncertain as genetic studies show a tumor suppressor function of TGF-beta in pancreatic cancer and other epithelial malignancies. Here, we used genetically engineered mouse models to investigate the therapeutic impact of global TGF-beta inhibition in pancreatic cancer in relation to tumor stage, genetic profile, and concurrent chemotherapy. We found that alpha v beta 6 integrin acted as a key upstream activator of TGF-beta in evolving pancreatic cancers. In addition, TGF-beta or alpha v beta 6 blockade increased tumor cell proliferation and accelerated both early and later disease stages. These effects were dependent on the presence of Smad4, a central mediator of TGF-beta signaling. Therefore, our findings indicate that alpha v beta 6 and TGF-beta act in a common tumor suppressor pathway whose pharmacologic inactivation promotes pancreatic cancer progression. Cancer Res; 72(18); 4840-5. (C)2012 AACR.
引用
收藏
页码:4840 / 4845
页数:6
相关论文
共 20 条
[1]   Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer [J].
Bardeesy, Nabeel ;
Cheng, Kuang-hung ;
Berger, Justin H. ;
Chu, Gerald C. ;
Pahler, Jessica ;
Olson, Peter ;
Hezel, Aram F. ;
Horner, James ;
Lauwers, Gregory Y. ;
Hanahan, Douglas ;
DePinho, Ronald A. .
GENES & DEVELOPMENT, 2006, 20 (22) :3130-3146
[2]   Genetics and biology of pancreatic ductal adenocarcinoma [J].
Hezel, Aram F. ;
Kimmelman, Alec C. ;
Stanger, Ben Z. ;
Bardeesy, Nabeel ;
DePinho, Ronald A. .
GENES & DEVELOPMENT, 2006, 20 (10) :1218-1249
[3]   Foxp3 expression in pancreatic carcinoma cells as a novel mechanism of immune evasion in cancer [J].
Hinz, Sebastian ;
Pagerols-Raluy, Laia ;
Oberg, Hans-Heinrich ;
Ammerpohl, Ole ;
Gruessel, Sandra ;
Sipos, Bence ;
Gruetzmann, Robert ;
Pilarskys, Christian ;
Ungefroren, Hendrik ;
Saeger, Hans-Detlev ;
Mloeppel, Guenter ;
Kabelitz, Dieter ;
Kalthoff, Holger .
CANCER RESEARCH, 2007, 67 (17) :8344-8350
[4]   Role of Ras Signaling in the Induction of Snail by Transforming Growth Factor-β [J].
Horiguchi, Kana ;
Shirakihara, Takuya ;
Nakano, Ayako ;
Imamura, Takeshi ;
Miyazono, Kohei ;
Saitoh, Masao .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (01) :245-253
[5]   Aggressive pancreatic ductal adenocarcinoma in mice caused by pancreas-specific blockade of transforming growth factor-β signaling in cooperation with active Kras expression [J].
Ijichi, Hideaki ;
Chytil, Anna ;
Gorska, Agnieszka E. ;
Aakre, Mary E. ;
Fujitani, Yoshio ;
Fujitani, Shuko ;
Wright, Christopher V. E. ;
Moses, Harold L. .
GENES & DEVELOPMENT, 2006, 20 (22) :3147-3160
[6]   Inhibiting Cxcr2 disrupts tumor-stromal interactions and improves survival in a mouse model of pancreatic ductal adenocarcinoma [J].
Ijichi, Hideaki ;
Chytil, Anna ;
Gorska, Agnieszka E. ;
Aakre, Mary E. ;
Bierie, Brian ;
Tada, Motohisa ;
Mohri, Dai ;
Miyabayashi, Koji ;
Asaoka, Yoshinari ;
Maeda, Shin ;
Ikenoue, Tsuneo ;
Tateishi, Keisuke ;
Wright, Christopher V. E. ;
Koike, Kazuhiko ;
Omata, Masao ;
Moses, Harold L. .
JOURNAL OF CLINICAL INVESTIGATION, 2011, 121 (10) :4106-4117
[7]   TGFβ signalling: a complex web in cancer progression [J].
Ikushima, Hiroaki ;
Miyazono, Kohei .
NATURE REVIEWS CANCER, 2010, 10 (06) :415-424
[8]   KrasG12D and Smad4/Dpc4 haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas [J].
Izeradjene, Kamel ;
Combs, Chelsea ;
Best, Melissa ;
Gopinathan, Aarthi ;
Wagner, Amary ;
Girady, William M. ;
Deng, Chu-Xia ;
Hruban, Ralph H. ;
Adsay, N. Volkan ;
Tuveson, David A. ;
Hingorani, Sunil R. .
CANCER CELL, 2007, 11 (03) :229-243
[9]   Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-β signaling [J].
Kano, Mitsunobu R. ;
Bae, Younsoo ;
Iwata, Caname ;
Morishita, Yasuyuki ;
Yashiro, Masakazu ;
Oka, Masako ;
Fujii, Tomoko ;
Komuro, Akiyoshi ;
Kiyono, Kunihiko ;
Kaminishi, Michio ;
Hirakawa, Kosei ;
Ouchi, Yasuyoshi ;
Nishiyama, Nobuhiro ;
Kataoka, Kazunori ;
Miyazono, Kohei .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (09) :3460-3465
[10]   TGFβ signaling in growth control, cancer, and heritable disorders [J].
Massagué, J ;
Blain, SW ;
Lo, RS .
CELL, 2000, 103 (02) :295-309