Morrey-Sobolev Spaces on Metric Measure Spaces

被引:13
作者
Lu, Yufeng [1 ]
Yang, Dachun [1 ]
Yuan, Wen [1 ,2 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Univ Jena, Math Inst, D-07743 Jena, Germany
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Sobolev space; Morrey space; Upper gradient; Hajlasz gradient; Metric measure space; Maximal operator; NEWTONIAN SPACES;
D O I
10.1007/s11118-013-9370-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, the authors introduce the Newton-Morrey-Sobolev space on a metric measure space (oe'(3), d, mu). The embedding of the Newton-Morrey-Sobolev space into the Holder space is obtained if oe'(3) supports a weak Poincar, inequality and the measure mu is doubling and satisfies a lower bounded condition. Moreover, in the Ahlfors Q-regular case, a Rellich-Kondrachov type embedding theorem is also obtained. Using the Hajasz gradient, the authors also introduce the Hajasz-Morrey-Sobolev spaces, and prove that the Newton-Morrey-Sobolev space coincides with the Hajasz-Morrey-Sobolev space when mu is doubling and oe'(3) supports a weak Poincar, inequality. In particular, on the Euclidean space , the authors obtain the coincidence among the Newton-Morrey-Sobolev space, the Hajasz-Morrey-Sobolev space and the classical Morrey-Sobolev space. Finally, when (oe'(3), d) is geometrically doubling and mu a non-negative Radon measure, the boundedness of some modified (fractional) maximal operators on modified Morrey spaces is presented; as an application, when mu is doubling and satisfies some measure decay property, the authors further obtain the boundedness of some (fractional) maximal operators on Morrey spaces, Newton-Morrey-Sobolev spaces and Hajasz-Morrey-Sobolev spaces.
引用
收藏
页码:215 / 243
页数:29
相关论文
共 44 条
[1]   Morrey spaces in harmonic analysis [J].
Adams, David R. ;
Xiao, Jie .
ARKIV FOR MATEMATIK, 2012, 50 (02) :201-230
[2]   REGULARITY OF MORREY COMMUTATORS [J].
Adams, David R. ;
Xiao, Jie .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (09) :4801-4818
[3]   Morrey Potentials and Harmonic Maps [J].
Adams, David R. ;
Xiao, Jie .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 308 (02) :439-456
[4]  
Adams DR, 2004, INDIANA U MATH J, V53, P1629
[5]  
[Anonymous], 1971, Lecture Notes in Mathematics
[6]  
[Anonymous], 1993, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals
[7]  
[Anonymous], EMS TRACTS MATH
[8]  
Arai H, 1997, MATH NACHR, V185, P5
[9]  
Björn A, 2008, HOUSTON J MATH, V34, P1197
[10]  
COSTEA S., ILLINOIS J IN PRESS