Multiplicative structure of Kauffman bracket skein module quantizations

被引:56
作者
Bullock, D [1 ]
Przytycki, JH [1 ]
机构
[1] George Washington Univ, Dept Math, Washington, DC 20052 USA
关键词
knot; link; 3-manifold; skein module;
D O I
10.1090/S0002-9939-99-05043-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe, for a few small examples, the Kauffman bracket skein algebra of a surface crossed with an interval. If the surface is a punctured torus the result is a quantization of the symmetric algebra in three variables (and an algebra closely related to a cyclic quantization of U(so(3))). For a torus without boundary we obtain a quantization of "the symmetric homologies" of a torus (equivalently, the coordinate ring of the SL2(C)-character variety of Z + Z). Presentations are also given for the four-punctured sphere and twice-punctured torus. We conclude with an investigation of central elements and zero divisors.
引用
收藏
页码:923 / 931
页数:9
相关论文
共 10 条
[1]   Rings of SL2(C)-characters and the Kauffman bracket skein module [J].
Bullock, D .
COMMENTARII MATHEMATICI HELVETICI, 1997, 72 (04) :521-542
[2]  
BULLOCK D, IN PRESS MATH Z
[3]   CHARACTERS OF FREE GROUPS REPRESENTED IN 2-DIMENSIONAL SPECIAL LINEAR GROUP [J].
HOROWITZ, RD .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1972, 25 (06) :635-649
[4]  
Hoste J. J., 1992, KNOTS, V90, P363
[5]  
ODESSKII AV, 1986, FUNKTSIONAL ANAL PRI, V20, P78
[6]  
Przytycki, 1991, B POL ACAD SCI, V39, P91
[7]  
PRZYTYCKI JH, QALG9705011
[8]  
PRZYTYCKI JH, 1997, P KNOTS 96, P279
[9]  
PRZYTYCKI JH, IN PRESS P BAN CTR M
[10]  
ZACHOS CK, 1990, P ARG WORKSH QUANT G