Long-term variations of CO2 trapped in different mechanisms in deep saline formations: A case study of the Songliao Basin, China

被引:146
作者
Zhang, Wei [1 ]
Li, Yilian [1 ]
Xu, Tianfu [2 ]
Cheng, Huilin [1 ]
Zheng, Yan [1 ]
Xiong, Peng [1 ]
机构
[1] China Univ Geosci, Sch Environm Studies, Wuhan 430074, Peoples R China
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA
基金
中国国家自然科学基金;
关键词
Geological storage; Carbon dioxide; Numerical simulation; Saline formation; Songliao Basin; China; REACTIVE GEOCHEMICAL TRANSPORT; CARBON-DIOXIDE SEQUESTRATION; NUMERICAL-SIMULATION; SEDIMENTARY BASINS; AQUIFER DISPOSAL; GEOLOGICAL MEDIA; GREENHOUSE GASES; CLIMATE-CHANGE; STORAGE; INJECTION;
D O I
10.1016/j.ijggc.2008.07.007
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The geological storage of CO2 in deep saline formations is increasing seen as a viable strategy to reduce the release of greenhouse gases to the atmosphere. There are numerous sedimentary basins in China, in which a number of suitable CO2 geologic reservoirs are potentially available. To identify the multi-phase processes, geochemical changes and mineral alteration, and CO2 trapping mechanisms after CO2 injection, reactive geochemical transport simulations using a simple 2D model were performed. Mineralogical composition and water chemistry from a deep saline formation of Songliao Basin were used. Results indicate that different storage forms Of CO2 vary with time. In the CO2 injection period, a large amount Of CO2 remains as a free supercritical phase (gas trapping), and the amount dissolved in the formation water (solubility trapping) gradually increases. Later, gas trapping decrease, solubility trapping increases significantly due to the migration and diffusion Of CO2 plume and the convective mixing between CO2-saturated water and unsaturated water, and the amount trapped by carbonate minerals increases gradually with time. The residual CO2 gas keeps dissolving into groundwater and precipitating carbonate minerals. For the Songliao Basin sandstone, variations in the reaction rate and abundance of chlorite, and plagioclase composition affect significantly the estimates of mineral alteration and CO2 storage in different trapping mechanisms. The effect of vertical permeability and residual gas saturation on the overall storage is smaller compared to the geochemical factors. However, they can affect the spatial distribution of the injected CO2 in the formations. The CO2 mineral trapping capacity could be in the order of 10 kg/m(3) medium for the Songliao Basin sandstone, and may be higher depending on the composition of primary aluminosilicate minerals especially the content of Ca, Mg, and Fe. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:161 / 180
页数:20
相关论文
共 61 条
[1]   Modeling carbon dioxide sequestration in saline aquifers: Significance of elevated pressures and salinities [J].
Allen, DE ;
Strazisar, BR ;
Soong, Y ;
Hedges, SW .
FUEL PROCESSING TECHNOLOGY, 2005, 86 (14-15) :1569-1580
[2]   Numerical modeling of fluid-rock chemical interactions at the supercritical CO2-liquid interface during CO2 injection into a carbonate reservoir, the Dogger aquifer (Paris Basin, France) [J].
Andre, L. ;
Audigane, P. ;
Azaroual, M. ;
Menjoz, A. .
ENERGY CONVERSION AND MANAGEMENT, 2007, 48 (06) :1782-1797
[3]  
[Anonymous], P SPE DOE 14 S IMPR
[4]  
[Anonymous], AM CHEM SOC S SER
[5]   Two-dimensional reactive transport modeling of CO2 injection in a saline Aquifer at the Sleipner site, North Sea [J].
Audigane, Pascal ;
Gaus, Irina ;
Czernichowski-Lauriol, Isabelle ;
Pruess, Karsten ;
Xu, Tianfu .
AMERICAN JOURNAL OF SCIENCE, 2007, 307 (07) :974-1008
[6]   Sequestration of CO2 in geological media in response to climate change:: capacity of deep saline aquifers to sequester CO2 in solution [J].
Bachu, S ;
Adams, JJ .
ENERGY CONVERSION AND MANAGEMENT, 2003, 44 (20) :3151-3175
[7]   Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change [J].
Bachu, S .
ENVIRONMENTAL GEOLOGY, 2003, 44 (03) :277-289
[8]   AQUIFER DISPOSAL OF CO2 - HYDRODYNAMIC AND MINERAL TRAPPING [J].
BACHU, S ;
GUNTER, WD ;
PERKINS, EH .
ENERGY CONVERSION AND MANAGEMENT, 1994, 35 (04) :269-279
[9]  
Bai B, 2006, CHIN J ROCK MECH ENG, V25, P2918
[10]   Chemistry of aqueous mineral carbonation for carbon sequestration and explanation of experimental results [J].
Chen, Zhong-Ying ;
O'Connor, William K. ;
Gerdemann, S. J. .
ENVIRONMENTAL PROGRESS, 2006, 25 (02) :161-166