A penalty method for American options with jump diffusion processes

被引:144
作者
d'Halluin, Y [1 ]
Forsyth, PA [1 ]
Labahn, G [1 ]
机构
[1] Univ Waterloo, Sch Comp Sci, Waterloo, ON N2L 3G1J, Canada
关键词
D O I
10.1007/s00211-003-0511-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The fair price for an American option where the underlying asset follows a jump diffusion process can be formulated as a partial integral differential linear complementarity problem. We develop an implicit discretization method for pricing such American options. The jump diffusion correlation integral term is computed using an iterative method coupled with an FFT while the American constraint is imposed by using a penalty method. We derive sufficient conditions for global convergence of the discrete penalized equations at each timestep. Finally, we present numerical tests which illustrate such convergence.
引用
收藏
页码:321 / 352
页数:32
相关论文
共 41 条
[1]  
AMADORI AL, OBSTACLE PROBLEM NON
[2]   JUMP DIFFUSION OPTION VALUATION IN DISCRETE-TIME [J].
AMIN, KI .
JOURNAL OF FINANCE, 1993, 48 (05) :1833-1863
[3]  
Andersen L., 2000, REV DERIV RES, V4, P231, DOI DOI 10.1023/A:1011354913068
[4]  
[Anonymous], 1998, J. Math. Systems Estim. Control
[5]  
[Anonymous], 1998, DERIVATIVES
[6]  
AYACHE E, 2002, WILMOTT MAGAZINE DEC, P68
[7]  
Barles G, 1997, NUMERICAL METHODS FI, V13, P1
[8]  
BRIANI M, IN PRESS NUMERISCHE
[9]  
BROADIE M, 2002, APPL FAST GAUSS TRAN
[10]  
Coleman T., 1999, J COMPUT FINANC, V2, P77, DOI DOI 10.21314/JCF.1999.027