Duality in d.c. programming:: The case of several d.c. constraints

被引:63
作者
Martínez-Legaz, JE [1 ]
Volle, M
机构
[1] Univ Autonoma Barcelona, CODE, Bellaterra 08193, Spain
[2] Univ Autonoma Barcelona, Dept Econ & Hist Econ, Bellaterra 08193, Spain
[3] Univ Avignon, Dept Math, F-84000 Avignon, France
关键词
D O I
10.1006/jmaa.1999.6496
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a duality scheme for the problem of minimizing the difference of two extended real-valued convex functions (d.c. functions) under finitely many d.c. constraints in terms of the Legendre-Fenchel conjugates of the involved convex functions. (C) 1999 Academic Press.
引用
收藏
页码:657 / 671
页数:15
相关论文
共 10 条
[1]  
Hiriart-Urruty J. B., 1993, CONVEX ANAL MINIMIZA
[2]  
Hiriart-Urruty J-B., 1993, CONVEX ANAL MINIMIZA
[3]  
Laurent P-J., 1972, Approximation et optimisation
[4]   Duality in reverse convex optimization [J].
Lemaire, B .
SIAM JOURNAL ON OPTIMIZATION, 1998, 8 (04) :1029-1037
[5]   A general duality scheme for nonconvex minimization problems with a strict inequality constraint [J].
Lemaire, B ;
Volle, M .
JOURNAL OF GLOBAL OPTIMIZATION, 1998, 13 (03) :317-327
[6]  
Lemaire B, 1998, NONCON OPTIM ITS APP, V27, P331
[7]  
MOREAU JJ, 1970, J MATH PURE APPL, V49, P109
[8]  
Moussaoui M, 1996, CR ACAD SCI I-MATH, V322, P839
[9]  
MOUSSAOUI M, IN PRESS POSITIVITY
[10]  
Rockafellar RT., 2015, CONVEX ANAL