Exploring quantum phases by driven dissipation

被引:32
作者
Lang, Nicolai [1 ]
Buechler, Hans Peter [1 ]
机构
[1] Univ Stuttgart, Inst Theoret Phys 3, D-70550 Stuttgart, Germany
来源
PHYSICAL REVIEW A | 2015年 / 92卷 / 01期
关键词
LATTICE GAUGE-THEORIES; SIMULATION; SYSTEMS; ORDER;
D O I
10.1103/PhysRevA.92.012128
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Dephasing and decay are the intrinsic dissipative processes prevalent in any open quantum system and the dominant mechanisms for the loss of coherence and entanglement. This inadvertent effect not only can be overcome but can even be capitalized on in a dissipative quantum simulation by means of tailored couplings between the quantum system and the environment. In this context it has been demonstrated that universal quantum computation can be performed using purely dissipative elements, and furthermore, the efficient preparation of highly entangled states is possible. In this article, we are interested in nonequilibrium phase transitions appearing in purely dissipative systems and the exploration of quantum phases in terms of a dissipative quantum simulation. To elucidate these concepts, we scrutinize exemplarily two paradigmatic models: the transverse-field Ising model and the considerably more complex Z(2) lattice gauge theory. We show that the nonequilibrium phase diagrams parallel the quantum phase diagrams of the Hamiltonian "blueprint" theories.
引用
收藏
页数:12
相关论文
共 39 条
[1]   MEAN-FIELD APPROXIMATION FOR ZN LATTICE GAUGE-THEORY COUPLED TO MATTER [J].
ALVAREZ, JM ;
SOCOLOVSKY, M .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1985, 90 (01) :31-38
[2]  
[Anonymous], 2011, QUANTUM PHASE TRANSI
[3]   Dynamical phases and intermittency of the dissipative quantum Ising model [J].
Ates, Cenap ;
Olmos, Beatriz ;
Garrahan, Juan P. ;
Lesanovsky, Igor .
PHYSICAL REVIEW A, 2012, 85 (04)
[4]   Quantum information-geometry of dissipative quantum phase transitions [J].
Banchi, Leonardo ;
Giorda, Paolo ;
Zanardi, Paolo .
PHYSICAL REVIEW E, 2014, 89 (02)
[5]   An open-system quantum simulator with trapped ions [J].
Barreiro, Julio T. ;
Mueller, Markus ;
Schindler, Philipp ;
Nigg, Daniel ;
Monz, Thomas ;
Chwalla, Michael ;
Hennrich, Markus ;
Roos, Christian F. ;
Zoller, Peter ;
Blatt, Rainer .
NATURE, 2011, 470 (7335) :486-491
[6]   AN IMPROVED MEAN-FIELD CALCULATION FOR THE Z(2) HIGGS-MODEL [J].
DAGOTTO, E .
PHYSICS LETTERS B, 1984, 136 (1-2) :60-63
[7]   WAVE-FUNCTION APPROACH TO DISSIPATIVE PROCESSES IN QUANTUM OPTICS [J].
DALIBARD, J ;
CASTIN, Y ;
MOLMER, K .
PHYSICAL REVIEW LETTERS, 1992, 68 (05) :580-583
[8]   Quantum states and phases in driven open quantum systems with cold atoms [J].
Diehl, S. ;
Micheli, A. ;
Kantian, A. ;
Kraus, B. ;
Buechler, H. P. ;
Zoller, P. .
NATURE PHYSICS, 2008, 4 (11) :878-883
[9]   Dynamical Phase Transitions and Instabilities in Open Atomic Many-Body Systems [J].
Diehl, Sebastian ;
Tomadin, Andrea ;
Micheli, Andrea ;
Fazio, Rosario ;
Zoller, Peter .
PHYSICAL REVIEW LETTERS, 2010, 105 (01)
[10]   STRONG COUPLING AND MEAN FIELD METHODS IN LATTICE GAUGE-THEORIES [J].
DROUFFE, JM ;
ZUBER, JB .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1983, 102 (1-2) :1-119