A streamline diffusion finite element method for the viscous shallow water equations

被引:6
作者
Dawson, Clint [1 ]
Videman, Juha H. [2 ]
机构
[1] Univ Texas Austin, Ctr Subsurface Modeling, Austin, TX 78712 USA
[2] Univ Tecn Lisboa, Inst Super Tecn, Dept Math, CAMGSD, P-1049001 Lisbon, Portugal
关键词
Shallow-water equations; Finite element method; Streamline diffusion method; A priori estimates; NAVIER-STOKES EQUATIONS; COMPUTATIONAL FLUID-DYNAMICS; SUPG FORMULATION; CONVERGENCE; SYSTEMS;
D O I
10.1016/j.cam.2013.03.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We formulate and prove a priori error bounds for the streamline diffusion finite element method or Streamline Upwind Petrov-Galerkin (SUPG) method applied to the shallow water equations. We derive an error estimate for linear approximations in both velocity and water elevation and comment on higher-order approximations. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
[41]   Least-squares finite-element method for shallow-water equations with source terms [J].
Shin-Jye Liang ;
Tai-Wen Hsu .
Acta Mechanica Sinica, 2009, 25 :597-610
[42]   Least-squares finite-element method for shallow-water equations with source terms [J].
ShinJye Liang ;
TaiWen Hsu .
Acta Mechanica Sinica, 2009, 25 (05) :597-610
[43]   Solution of shallow-water equations using least-squares finite-element method [J].
Liang, Shin-Jye ;
Tang, Jyh-Haw ;
Wu, Ming-Shun .
ACTA MECHANICA SINICA, 2008, 24 (05) :523-532
[44]   A SPLIT-CHARACTERISTIC BASED FINITE-ELEMENT MODEL FOR THE SHALLOW-WATER EQUATIONS [J].
ZIENKIEWICZ, OC ;
ORTIZ, P .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1995, 20 (8-9) :1061-1080
[45]   Streamline-diffusion method of a lowest order nonconforming rectangular finite element for convection-diffusion problem [J].
Dong-yang Shi ;
Hong-xin Cui ;
Hong-bo Guan .
Acta Mathematicae Applicatae Sinica, English Series, 2015, 31 :427-434
[46]   Streamline-Diffusion Method of a Lowest Order Nonconforming Rectangular Finite Element for Convection-Diffusion Problem [J].
Dongyang SHI ;
Hongxin CUI ;
Hongbo GUAN .
Acta Mathematicae Applicatae Sinica, 2015, 31 (02) :427-434
[47]   Galerkin finite element methods for the Shallow Water equations over variable bottom [J].
Kounadis, G. ;
Dougalis, V. A. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 373 (373)
[48]   A FINITE-ELEMENT SOLUTION OF THE SHALLOW-WATER WAVE-EQUATIONS [J].
UTNES, T .
APPLIED MATHEMATICAL MODELLING, 1990, 14 (01) :20-29
[49]   A finite element exterior calculus framework for the rotating shallow-water equations [J].
Cotter, C. J. ;
Thuburn, J. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 257 :1506-1526
[50]   Multiple-grid finite element solution of the shallow water equations: Water hammer phenomenon [J].
Triki, A. .
COMPUTERS & FLUIDS, 2014, 90 :65-71