A streamline diffusion finite element method for the viscous shallow water equations

被引:6
作者
Dawson, Clint [1 ]
Videman, Juha H. [2 ]
机构
[1] Univ Texas Austin, Ctr Subsurface Modeling, Austin, TX 78712 USA
[2] Univ Tecn Lisboa, Inst Super Tecn, Dept Math, CAMGSD, P-1049001 Lisbon, Portugal
关键词
Shallow-water equations; Finite element method; Streamline diffusion method; A priori estimates; NAVIER-STOKES EQUATIONS; COMPUTATIONAL FLUID-DYNAMICS; SUPG FORMULATION; CONVERGENCE; SYSTEMS;
D O I
10.1016/j.cam.2013.03.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We formulate and prove a priori error bounds for the streamline diffusion finite element method or Streamline Upwind Petrov-Galerkin (SUPG) method applied to the shallow water equations. We derive an error estimate for linear approximations in both velocity and water elevation and comment on higher-order approximations. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
[31]   A MIXED FINITE ELEMENT METHOD FOR NONLINEAR DIFFUSION EQUATIONS [J].
Burger, Martin ;
Carrillo, Jose A. ;
Wolfram, Marie-Therese .
KINETIC AND RELATED MODELS, 2010, 3 (01) :59-83
[32]   A first-order system least squares finite element method for the shallow water equations [J].
Starke, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 42 (06) :2387-2407
[33]   A VARYING TIME-STEP FINITE-ELEMENT METHOD FOR THE SHALLOW-WATER EQUATIONS [J].
KNOCK, C ;
RYRIE, SC .
APPLIED MATHEMATICAL MODELLING, 1994, 18 (04) :224-230
[34]   Shallow water equations: viscous solutions and inviscid limit [J].
Chen, Gui-Qiang ;
Perepelitsa, Mikhail .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (06) :1067-1084
[35]   A numerical method to solve shallow water equations [J].
Wang Xianmin ;
Pang Yong ;
Huang Zhihua ;
Han Tao ;
Tang Lei .
ICMS2010: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION, VOL 1: ENGINEERING COMPUTATION AND FINITE ELEMENT ANALYSIS, 2010, :36-39
[36]   Lattice Boltzmann Simulation of Shallow Water Equations in Finite Element Framework [J].
Lee, Haegyun ;
Lee, Namjoo .
JOURNAL OF COASTAL RESEARCH, 2018, :106-110
[37]   A hybrid finite volume/finite element method for shallow water waves by static deformation on seabeds [J].
Al-Ghosoun, Alia ;
Osman, Ashraf S. ;
Seaid, Mohammed .
ENGINEERING COMPUTATIONS, 2021, 38 (05) :2434-2459
[38]   A new nonlinear Galerkin finite element method for the computation of reaction diffusion equations [J].
Zhang, Rongpei ;
Zhu, Jiang ;
Loula, Abimael F. D. ;
Yu, Xijun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 434 (01) :136-148
[39]   Solution of shallow-water equations using least-squares finite-element method [J].
Shin-Jye Liang ;
Jyh-Haw Tang .
Acta Mechanica Sinica, 2008, 24 (05) :523-532
[40]   Solution of shallow-water equations using least-squares finite-element method [J].
Shin-Jye Liang ;
Jyh-Haw Tang ;
Ming-Shun Wu .
Acta Mechanica Sinica, 2008, 24 :523-532