A streamline diffusion finite element method for the viscous shallow water equations

被引:6
作者
Dawson, Clint [1 ]
Videman, Juha H. [2 ]
机构
[1] Univ Texas Austin, Ctr Subsurface Modeling, Austin, TX 78712 USA
[2] Univ Tecn Lisboa, Inst Super Tecn, Dept Math, CAMGSD, P-1049001 Lisbon, Portugal
关键词
Shallow-water equations; Finite element method; Streamline diffusion method; A priori estimates; NAVIER-STOKES EQUATIONS; COMPUTATIONAL FLUID-DYNAMICS; SUPG FORMULATION; CONVERGENCE; SYSTEMS;
D O I
10.1016/j.cam.2013.03.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We formulate and prove a priori error bounds for the streamline diffusion finite element method or Streamline Upwind Petrov-Galerkin (SUPG) method applied to the shallow water equations. We derive an error estimate for linear approximations in both velocity and water elevation and comment on higher-order approximations. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
[21]   A streamline diffusion nonconforming finite element method for the time-dependent linearized Navier-Stokes equations [J].
Chen, Yu-mei ;
Xie, Xiao-ping .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2010, 31 (07) :861-874
[22]   The discontinuous Galerkin finite element method for the 2D shallow water equations [J].
Li, H ;
Liu, RX .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2001, 56 (03) :223-233
[23]   A least-squares finite-element method for shallow-water equations [J].
Liang, Shin-Jye .
OCEANS 2008 - MTS/IEEE KOBE TECHNO-OCEAN, VOLS 1-3, 2008, :1139-1147
[24]   Streamline-Diffusion Method of a Lowest Order Nonconforming Rectangular Finite Element for Convection-Diffusion Problem [J].
Shi, Dong-yang ;
Cui, Hong-xin ;
Guan, Hong-bo .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2015, 31 (02) :427-434
[25]   The finite difference streamline diffusion method for the in compressible Navier-Stokes equations [J].
Sun, TJ ;
Ma, KY .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 149 (02) :493-505
[26]   SPACE-TIME LEAST-SQUARES FINITE-ELEMENT METHOD FOR SHALLOW-WATER EQUATIONS [J].
Liang, Shin-Jye ;
Chen, Ying-Chih .
JOURNAL OF MARINE SCIENCE AND TECHNOLOGY-TAIWAN, 2011, 19 (05) :571-578
[27]   Evaluation of Galerkin and Petrov-Galerkin model reduction for finite element approximations of the shallow water equations [J].
Lozovskiy, Alexander ;
Farthing, Matthew ;
Kees, Chris .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 318 :537-571
[28]   The semi-discrete streamline diffusion finite element method for time-dependented convection-diffusion problems [J].
Si, Zhiyong ;
Feng, Xinlong ;
Abduwali, Abdurishit .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 202 (02) :771-779
[29]   An adaptive finite point method for the shallow water equations [J].
Ortega, Enrique ;
Onate, Eugenio ;
Idelsohn, Sergio ;
Buachart, Chinapat .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 88 (02) :180-204
[30]   A simple finite volume method for the shallow water equations [J].
Benkhaldoun, Fayssal ;
Seaid, Mohammed .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (01) :58-72