Doping of SiGe core-shell nanowires

被引:8
|
作者
Amato, Michele [2 ,3 ]
Rurali, Riccardo [1 ]
Ossicini, Stefano [2 ,3 ,4 ]
机构
[1] Inst Ciencia Mat Barcelona ICMAB CSIC, Barcelona 08193, Spain
[2] Univ Modena & Reggio Emilia, Dipartimento Sci & Metodi Ingn, I-42122 Reggio Emilia, Italy
[3] CNR Ist Nanosci, Ctr S3, I-41125 Modena, Italy
[4] Univ Modena & Reggio Emilia, Ctr Interdipartimentale En&Tech, I-42122 Reggio Emilia, Italy
关键词
Core-shell NWs; Doping; Electron and hole gas; Photovoltaics; DFT; SILICON NANOWIRES; HOLE GAS; GROWTH; TRANSPORT; SEGREGATION; CONFINEMENT; STABILITY; ENERGIES; DEFECTS; LOGIC;
D O I
10.1007/s10825-012-0394-y
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Dopant deactivation in pure Si and pure Ge nanowires (NWs) can compromise the efficiency of the doping process at nanoscale. Quantum confinement, surface segregation and dielectric mismatch, in different ways, strongly reduce the carrier generation induced by intentional addition of dopants. This issue seems to be critical for the fabrication of high-quality electrical devices for various future applications, such as photovoltaics and nanoelectronics. By means of Density Functional Theory simulations, we show how this limit can be rode out in core-shell silicon-germanium NWs (SiGe NWs), playing on the particular energy band alignment that comes out at the Si/Ge interface. We demonstrate how, by choosing the appropriate doping configurations, it is possible to obtain a 1-D electron or hole gas, which has not to be thermally activated and which can furnish carriers also at very low temperatures. Our findings suggest core-shell NWs as possible building blocks for high-speed electronic device and new generation solar cells.
引用
收藏
页码:272 / 279
页数:8
相关论文
共 50 条
  • [21] Characterization of Impurity Doping and Stress in Si/Ge and Ge/Si Core-Shell Nanowires
    Fukata, Naoki
    Mitome, Masanori
    Sekiguchi, Takashi
    Bando, Yoshio
    Kirkham, Melanie
    Hong, Jung-Il
    Wang, Zhong Lin
    Snydert, Robert L.
    ACS NANO, 2012, 6 (10) : 8887 - 8895
  • [22] Core-Shell Nanowires for Efficient Photovoltaic Devices
    不详
    CHEMPHYSCHEM, 2011, 12 (13) : 2373 - 2373
  • [23] Electrochemical synthesis of core-shell magnetic nanowires
    Ovejero, Jesus G.
    Bran, Cristina
    Morales, Maria P.
    Vazquez, Manuel
    Vilanova, Enrique
    Kosel, Juergen
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2015, 389 : 144 - 147
  • [24] Anisotropic In distribution in InGaN core-shell nanowires
    Leclere, C.
    Katcho, N. A.
    Tourbot, G.
    Daudin, B.
    Proietti, M. G.
    Renevier, H.
    JOURNAL OF APPLIED PHYSICS, 2014, 116 (01)
  • [25] Band structure of core-shell semiconductor nanowires
    Pistol, M. -E.
    Pryor, C. E.
    PHYSICAL REVIEW B, 2008, 78 (11):
  • [26] Polytypism in GaAs/GaNAs core-shell nanowires
    Yukimune, M.
    Fujiwara, R.
    Mita, T.
    Ishikawa, F.
    NANOTECHNOLOGY, 2020, 31 (50)
  • [27] Thermal conductivity reduction in core-shell nanowires
    Hu, Ming
    Zhang, Xiaoliang
    Giapis, Konstantinos P.
    Poulikakos, Dimos
    PHYSICAL REVIEW B, 2011, 84 (08):
  • [28] Layered structure in core-shell silicon nanowires
    Pham Van Tuan
    Chu Anh Tuan
    Iran Thanh Thuy
    Vu Binh Nam
    Pham Toan Thang
    Pham Hong Duong
    Pham Thanh Huy
    JOURNAL OF LUMINESCENCE, 2014, 154 : 46 - 50
  • [29] Si-SiC core-shell nanowires
    Ollivier, M.
    Latu-Romain, L.
    Martin, M.
    David, S.
    Mantoux, A.
    Bano, E.
    Souliere, V.
    Ferro, G.
    Baron, T.
    JOURNAL OF CRYSTAL GROWTH, 2013, 363 : 158 - 163
  • [30] Core-shell magnetic nanowires fabrication and characterization
    Kalska-Szostko, B.
    Kiekotka, U.
    Satula, D.
    APPLIED SURFACE SCIENCE, 2017, 396 : 1855 - 1859