Drift bifurcations of relative equilibria and transitions of spiral waves

被引:12
作者
Ashwin, P [1 ]
Melbourne, I
Nicol, M
机构
[1] Univ Surrey, Dept Math & Stat, Guildford GU2 5XH, Surrey, England
[2] Univ Houston, Dept Math, Houston, TX 77204 USA
[3] Univ Manchester, Inst Sci & Technol, Dept Math, Manchester M60 1QD, Lancs, England
关键词
D O I
10.1088/0951-7715/12/4/301
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider dynamical systems that are equivariant under a noncompact Lie group of symmetries and the drift of relative equilibria in such systems. In particular, we investigate how the drift for a parametrized family of normally hyperbolic relative equilibria can change character at what we call a 'drift bifurcation'. To do this, we use results of Arnold to analyse parametrized families of elements in the Lie algebra of the symmetry group. We examine effects in physical space of such drift bifurcations for planar reaction-diffusion systems and note that these effects can explain certain aspects of the transition from rigidly rotating spirals to rigidly propagating 'retracting waves'. This is a bifurcation observed in numerical simulations of excitable media where the rotation rate of a family of spirals slows down and gives way to a semi-infinite translating wavefront.
引用
收藏
页码:741 / 755
页数:15
相关论文
共 18 条
  • [1] Arnol'd VI., 1971, Math. Surveys, V26, P101
  • [2] Arnold V.I., 1971, R. Math. Surveys, V26, P29
  • [3] Noncompact drift for relative equilibria and relative periodic orbits
    Ashwin, P
    Melbourne, I
    [J]. NONLINEARITY, 1997, 10 (03) : 595 - 616
  • [4] A dynamical systems approach to spiral wave dynamics
    Barkley, Dwight
    Kevrekidis, Ioannis G.
    [J]. CHAOS, 1994, 4 (03) : 453 - 460
  • [5] Fiedler B., 1996, Doc. Math., V1, P479
  • [6] FIELD M, 1991, LECT NOTES MATH, V1463, P142
  • [7] EQUIVARIANT DYNAMICAL-SYSTEMS
    FIELD, MJ
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 259 (01) : 185 - 205
  • [8] Galin D. M., 1982, Am. Math. Soc. Transl., Ser. 2, V118, P1
  • [9] Galin D.M., 1975, T SEM IG PETR, V1, P63
  • [10] Meandering of the spiral tip: An alternative approach
    Golubitsky, M
    LeBlanc, VG
    Melbourne, I
    [J]. JOURNAL OF NONLINEAR SCIENCE, 1997, 7 (06) : 557 - 586