A multiresolution algorithm to approximate the Hutchinson measure for IFS and GIFS

被引:8
作者
Cunha, Rudnei D. [1 ,2 ]
Oliveira, Elismar R. [2 ]
Strobin, Filip [3 ]
机构
[1] Inst Matemat & Estat UFRGS, Av Bento Goncalves 9500, BR-91500900 Porto Alegre, RS, Brazil
[2] Univ Fed Rio Grande do Sul, Porto Alegre, RS, Brazil
[3] Lodz Univ Technol, Inst Math, Wolczaska 215, PL-90924 Lodz, Poland
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2020年 / 91卷
关键词
Iterated function system (IFS); Generalized iterated function system (GIFS); Markov operator; Invariant measures; Hutchinson measures; Attractor; Discrete deterministic algorithm; Discretization; ITERATED FUNCTION SYSTEMS; INVARIANT-MEASURES; ERGODIC THEOREM;
D O I
10.1016/j.cnsns.2020.105423
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a discrete version of the Hutchinson-Barnsley theory providing algorithms to approximate the Hutchinson measure for iterated function systems (IFS) and generalized iterated function systems (GIFS), complementing the discrete version of the deterministic algorithm considered in our previous work. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:22
相关论文
共 31 条
[1]  
[Anonymous], 2007, MEASURE THEORY, DOI DOI 10.1007/978-3-540-34514-5
[2]  
Barnsley M. F., 2014, FRACTALS EVERYWHERE
[3]  
BARNSLEY MF, 1988, ANN I H POINCARE-PR, V24, P367
[4]  
Berinde V, 2013, CREATIVE MATH INFORM, V22, P143
[5]   PERRON-FROBENIUS SPECTRUM FOR RANDOM MAPS AND ITS APPROXIMATION [J].
Blank, Michael .
MOSCOW MATHEMATICAL JOURNAL, 2001, 1 (03) :315-344
[6]  
Cipriano I., 2019, APPROXIMATING INTEGR
[7]   HARMONIC-FUNCTIONS FOR A TRANSITION OPERATOR AND APPLICATIONS [J].
CONZE, JP ;
RAUGI, A .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1990, 118 (03) :273-310
[8]  
Cunha R.D.d., 2020, MULTIRESOLUTION ALGO, DOI [10.1007/s11075-020-00886-w, DOI 10.1007/S11075-020-00886-W]
[9]   AN ERGODIC THEOREM FOR ITERATED MAPS [J].
ELTON, JH .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1987, 7 :481-488
[10]   Ulam's method for random interval maps [J].
Froyland, G .
NONLINEARITY, 1999, 12 (04) :1029-1052