Individual Human Behavior Identification Using an Inverse Reinforcement Learning Method

被引:0
作者
Inga, Jairo [1 ]
Koepf, Florian [1 ]
Flad, Michael [1 ]
Hohmann, Soeren [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Control Syst, Karlsruhe, Germany
来源
2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC) | 2017年
关键词
Human Behavior Identification; Inverse Optimal Control; Inverse Reinforcement Learning; Shared Control;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Shared control techniques have a great potential to create synergies in human-machine interaction for efficient and safe applications. However, an optimal interaction requires the machine to consider the individual behavior of the human partner. A widespread approach for modeling human behavior is given by optimal control theory, where the movement trajectories of a human arise from an optimized cost function. The aim of the identification is thus to determine parameters of a cost function which explains observed human motion. The central thesis of this paper is that individual cost function parameters which describe specific behavior can be determined by means of Inverse Reinforcement Learning. We show the applicability of the approach with a tracking control task example. The experiment consists in following a reference trajectory by means of a steering wheel. The study confirms that optimal control is suitable for modeling individual human behavior and demonstrates the suitability of Inverse Reinforcement Learning in order to determine the cost function parameters which explain measured data.
引用
收藏
页码:99 / 104
页数:6
相关论文
共 28 条
[1]  
Abbink DA, 2012, IEEE SYS MAN CYBERN, P3350, DOI 10.1109/ICSMC.2012.6378309
[2]   Haptic shared control: smoothly shifting control authority? [J].
Abbink, David A. ;
Mulder, Mark ;
Boer, Erwin R. .
COGNITION TECHNOLOGY & WORK, 2012, 14 (01) :19-28
[3]  
[Anonymous], 2014, Ph.D.dissertation
[4]  
[Anonymous], 2008, AAAI
[5]  
[Anonymous], 2012, P 29 INT COF INT C M
[6]   IRONIES OF AUTOMATION [J].
BAINBRIDGE, L .
AUTOMATICA, 1983, 19 (06) :775-779
[7]   Evidence for Composite Cost Functions in Arm Movement Planning: An Inverse Optimal Control Approach [J].
Berret, Bastien ;
Chiovetto, Enrico ;
Nori, Francesco ;
Pozzo, Thierry .
PLOS COMPUTATIONAL BIOLOGY, 2011, 7 (10)
[8]   Spatio temporal characteristics of muscle patterns for ball catching [J].
D'Andola, M. ;
Cesqui, B. ;
Portone, A. ;
Fernandez, L. ;
Lacquaniti, F. ;
d'Avella, A. .
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2013, 7
[9]   Adaptive learning of human motor behaviors: An evolving inverse optimal control approach [J].
El-Hussieny, Haitham ;
Abouelsoud, A. A. ;
Assal, Samy F. M. ;
Megahed, Said M. .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2016, 50 :115-124
[10]  
Englert P., 2015, INT S ROBOTICS RES