Characterization of a two-stage 30 K Joule-Thomson microcooler

被引:7
作者
Cao, H. S. [1 ]
Holland, H. J. [1 ]
Vermeer, C. H. [1 ]
Vanapalli, S. [1 ]
Lerou, P. P. P. M. [2 ]
Blom, M. [3 ]
ter Brake, H. J. M. [1 ]
机构
[1] Univ Twente, Fac Sci & Technol, NL-7500 AE Enschede, Netherlands
[2] Kryoz Technol BV, NL-7521 PV Enschede, Netherlands
[3] Micronit Microfuid BV, NL-7521 PV Enschede, Netherlands
关键词
MEMS-TECHNOLOGY; SUPERCONDUCTIVITY;
D O I
10.1088/0960-1317/23/6/065022
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Micromachined cryocoolers are attractive tools for cooling electronic chips and devices to cryogenic temperatures. A two-stage 30 K microcooler operating with nitrogen and hydrogen gas is fabricated using micromachining technology. The nitrogen and hydrogen stages cool down to about 94 and 30 K, respectively, using Joule-Thomson expansion in a restriction with a height of 1.10 mu m. The nitrogen stage is typically operated between 1.1 bar at the low-pressure side and 85.1 bar at the high-pressure side. The hydrogen stage has a low pressure of 5.7 bar, whereas the high pressure is varied between 45.5 and 60.4 bar. In changing the pressure settings, the cooling power can more or less be exchanged between the two stages. These typically range from 21 to 84 mW at 95 K at the nitrogen stage, corresponding to 30 to 5 mW at 31-32 K at the hydrogen stage. This paper discusses the characterization of this two-stage microcooler. Experimental results on cool down and cooling power are compared to dynamic modeling predictions.
引用
收藏
页数:7
相关论文
共 13 条
[1]  
Bejan A., 1993, HEAT TRANSFER
[2]   Superconducting quantum interference device based on MgB2 nanobridges [J].
Brinkman, A ;
Veldhuis, D ;
Mijatovic, D ;
Rijnders, G ;
Blank, DHA ;
Hilgenkamp, H ;
Rogalla, H .
APPLIED PHYSICS LETTERS, 2001, 79 (15) :2420-2422
[3]   Impact of MEMS technology on society [J].
Bryzek, J .
SENSORS AND ACTUATORS A-PHYSICAL, 1996, 56 (1-2) :1-9
[4]   Micromachined cryogenic cooler for cooling electronic devices down to 30 K [J].
Cao, H. S. ;
Holland, H. J. ;
Vermeer, C. H. ;
Vanapalli, S. ;
Lerou, P. P. P. M. ;
Blom, M. ;
ter Brake, H. J. M. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2013, 23 (02)
[5]   Design and optimization of a two-stage 28 K Joule-Thomson microcooler [J].
Cao, H. S. ;
Mudaliar, A. V. ;
Derking, J. H. ;
Lerou, P. P. P. M. ;
Holland, H. J. ;
Zalewski, D. R. ;
Vanapalli, S. ;
ter Brake, H. J. M. .
CRYOGENICS, 2012, 52 (01) :51-57
[6]   Fabrication of a micro cryogenic cold stage using MEMS-technology [J].
Lerou, P. P. P. M. ;
Venhorst, G. C. F. ;
Berends, C. F. ;
Veenstra, T. T. ;
Blom, M. ;
Burger, J. F. ;
ter Brake, H. J. M. ;
Rogalla, H. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2006, 16 (10) :1919-1925
[7]   Insight into clogging of micromachined cryogenic coolers [J].
Lerou, P. P. P. M. ;
ter Brake, H. J. M. ;
Holland, H. J. ;
Burger, J. F. ;
Rogalla, H. .
APPLIED PHYSICS LETTERS, 2007, 90 (06)
[8]   Superconductivity at 39 K in magnesium diboride [J].
Nagamatsu, J ;
Nakagawa, N ;
Muranaka, T ;
Zenitani, Y ;
Akimitsu, J .
NATURE, 2001, 410 (6824) :63-64
[9]   SQUIDs for everything [J].
Pulizzi, Fabio ;
Clarke, John .
NATURE MATERIALS, 2011, 10 (04) :262-263
[10]   Infrared detectors: status and trends [J].
Rogalski, A .
PROGRESS IN QUANTUM ELECTRONICS, 2003, 27 (2-3) :59-210