Small minimal blocking sets in PG(2, q3)

被引:20
作者
Polverino, O
Storme, L
机构
[1] Dipartimento Matemat & Applicaz, I-80126 Naples, Italy
[2] State Univ Ghent, Dept Pure Maths & Comp Algebra, B-9000 Ghent, Belgium
关键词
D O I
10.1006/eujc.2001.0545
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the results of Polverino (1999, Discrete Math., 208/209, 469-476; 2000, Des. Codes Cryptogr., 20, 319-324) on small minimal blocking sets in P G (2, p(3)), p prime, p : 7, to small minimal blocking sets in PG(2, q(3)), q = p(h), p prime, p : 7, with exponent e greater than or equal to h. We characterize these blocking sets completely as being blocking sets of Redei-type. (C) 2002 Academic Press.
引用
收藏
页码:83 / 92
页数:10
相关论文
共 9 条
[1]   Lacunary polynomials, multiple blocking sets and Baer subplanes [J].
Blokhuis, A ;
Storme, L ;
Szonyi, T .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 60 :321-332
[2]   On the number of slopes of the graph of a function defined on a finite field [J].
Blokhuis, A ;
Brouwer, AE ;
Storme, L ;
Szönyi, T .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1999, 86 (01) :187-196
[3]  
LUNARDON G, IN PRESS J GEOM
[4]   Partial t-spreads in PG(2t+1,q) [J].
Metsch, K ;
Storme, L .
DESIGNS CODES AND CRYPTOGRAPHY, 1999, 18 (1-3) :199-216
[5]   Small minimal blocking sets and complete k-arcs in PG(2, p3) [J].
Polverino, O .
DISCRETE MATHEMATICS, 1999, 208 :469-476
[6]   Small blocking sets in PG(2, p3) [J].
Polverino, O .
DESIGNS CODES AND CRYPTOGRAPHY, 2000, 20 (03) :319-324
[7]  
POLVERINO O, 1998, THESIS U NAPLES FEDE
[8]   On 1-blocking sets in PG(n, q), n ≥ 3 [J].
Storme, L ;
Weiner, Z .
DESIGNS CODES AND CRYPTOGRAPHY, 2000, 21 (1-3) :235-251
[9]  
Szonyi T., 1997, Finite Fields Appl., V3, P187, DOI [10.1006/ffta.1996.0176, DOI 10.1006/FFTA.1996.0176]