MEAN-VARIANCE HEDGING VIA STOCHASTIC CONTROL AND BSDES FOR GENERAL SEMIMARTINGALES

被引:33
作者
Jeanblanc, Monique [1 ,2 ]
Mania, Michael [4 ,5 ]
Santacroce, Marina [3 ]
Schweizer, Martin [6 ,7 ]
机构
[1] Univ Evry Val dEssonne, Lab Anal & Probabilites, IBGBI, F-91037 Evry, France
[2] Inst Europlace Finance, F-75002 Paris, France
[3] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
[4] A Razmadze Math Inst, GE-0193 Tbilisi, Georgia
[5] Georgian Amer Univ, Tbilisi, Georgia
[6] ETH, Dept Math, ETH Zentrum, CH-8092 Zurich, Switzerland
[7] Swiss Finance Inst, CH-8006 Zurich, Switzerland
关键词
Mean-variance hedging; stochastic control; backward stochastic differential equations; semimartingales; mathematical finance; variance-optimal martingale measure; MARTINGALE MEASURE;
D O I
10.1214/11-AAP835
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We solve the problem of mean-variance hedging for general semimartingale models via stochastic control methods. After proving that the value process of the associated stochastic control problem has a quadratic structure, we characterize its three coefficient processes as solutions of semimartingale backward stochastic differential equations and show how they can be used to describe the optimal trading strategy for each conditional mean-variance hedging problem. For comparison with the existing literature, we provide alternative equivalent versions of the BSDEs and present a number of simple examples.
引用
收藏
页码:2388 / 2428
页数:41
相关论文
共 24 条
[1]  
[Anonymous], 1981, Les aspects probabilistes du controle stochastique, Ecole d'ete de Probabilites de Saint-Flour IX-1979
[2]  
[Anonymous], 1996, Bernoulli
[3]  
[Anonymous], 2003, LIMIT THEOREMS STOCH, DOI DOI 10.1007/978-3-662-05265-5
[4]   An extension of mean-variance hedging to the discontinuous case [J].
Arai, T .
FINANCE AND STOCHASTICS, 2005, 9 (01) :129-139
[5]   Hedging derivative securities and incomplete markets:: An ε-arbitrage approach [J].
Bertsimas, D ;
Kogan, L ;
Lo, AW .
OPERATIONS RESEARCH, 2001, 49 (03) :372-397
[6]   Mean-variance hedging for stochastic volatility models [J].
Biagini, F ;
Guasoni, P ;
Pratelli, M .
MATHEMATICAL FINANCE, 2000, 10 (02) :109-123
[7]   Mean-variance hedging and stochastic control: Beyond the Brownian setting [J].
Bobrovnytska, O ;
Schweizer, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (03) :396-408
[8]  
Cerny A., 2004, Appl. Math. Finance, V11, P1
[9]   On the structure of general mean-variance hedging strategies [J].
Cerny, Ales ;
Kallsen, Jan .
ANNALS OF PROBABILITY, 2007, 35 (04) :1479-1531
[10]  
Choulli T, 1998, ANN PROBAB, V26, P853