Strichartz estimates for harmonic potential with time-decaying coefficient

被引:9
|
作者
Kawamoto, Masaki [1 ]
Yoneyama, Taisuke [2 ]
机构
[1] Kobe Univ, Grad Sch Sci, Dept Math, Nada Ku, 1-1 Rokkodai Cho, Kobe, Hyogo 6578501, Japan
[2] Tokyo Univ Sci, Grad Sch Sci, Dept Math, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, Japan
关键词
Strichartz estimates; Time-dependent Schodinger equations; Harmonic oscillator; SCHRODINGER EVOLUTION-EQUATIONS; INFINITY;
D O I
10.1007/s00028-017-0393-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the Strichartz estimates for the Schrodinger equations with a harmonic potential with a time-decaying coefficient.
引用
收藏
页码:127 / 142
页数:16
相关论文
共 50 条
  • [1] Strichartz estimates for harmonic potential with time-decaying coefficient
    Masaki Kawamoto
    Taisuke Yoneyama
    Journal of Evolution Equations, 2018, 18 : 127 - 142
  • [2] Asymptotic behavior for nonlinear Schrodinger equations with critical time-decaying harmonic potential
    Kawamoto, Masaki
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 303 : 253 - 267
  • [3] QUANTUM INVERSE SCATTERING FOR TIME-DECAYING HARMONIC OSCILLATORS
    Ishida, Atsuhide
    INVERSE PROBLEMS AND IMAGING, 2025, 19 (02) : 282 - 296
  • [4] EXISTENCE AND NONEXISTENCE OF WAVE OPERATORS FOR TIME-DECAYING HARMONIC OSCILLATORS
    Ishida, Atsuhide
    Kawamoto, Masaki
    REPORTS ON MATHEMATICAL PHYSICS, 2020, 85 (03) : 335 - 350
  • [5] A REMARK ON STRICHARTZ ESTIMATES WITH SLOWLY DECAYING POTENTIALS
    Taira, Kouichi
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (09) : 3953 - 3958
  • [6] Final state problem for nonlinear Schrodinger equations with time-decaying harmonic oscillators
    Kawamoto, Masaki
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 503 (01)
  • [7] Maintaining time-decaying stream aggregates
    Cohen, E
    Strauss, MJ
    JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2006, 59 (01): : 19 - 36
  • [9] Modified scattering operator for nonlinear Schrödinger equations with time-decaying harmonic potentials
    Kawamoto, Masaki
    Miyazaki, Hayato
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2025, 256
  • [10] Scalable Time-Decaying Adaptive Prediction Algorithm
    Tan, Yinyan
    Fan, Zhe
    Li, Guilin
    Wang, Fangshan
    Li, Zhengbing
    Liu, Shikai
    Pan, Qiuling
    Xing, Eric P.
    Ho, Qirong
    KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 617 - 626