In-situ study of surface structure evolution of silicon anodes by electrochemical atomic force microscopy

被引:50
作者
Huang, Shiqiang [1 ,2 ]
Cheong, Ling-Zhi [3 ]
Wang, Shuwei [1 ]
Wang, Deyu [1 ]
Shen, Cai [1 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, 1219 Zhongguan Rd, Ningbo 315201, Zhejiang, Peoples R China
[2] Univ Chinese Acad Sci, 19 A Yuquan Rd, Beijing 100049, Peoples R China
[3] Ningbo Univ, Sch Marine Sci, Ningbo 315211, Zhejiang, Peoples R China
关键词
Lithium-ion battery; Size effect; Atomic force microscopy; Surface structure; Silicon anode; SOLID-ELECTROLYTE INTERPHASE; LITHIUM-ION BATTERIES; FLUOROETHYLENE CARBONATE; THIN-FILMS; PERFORMANCE; LI; LNTERPHASE; LITHIATION; AFM; SPECTROSCOPY;
D O I
10.1016/j.apsusc.2018.05.020
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silicon is one of the most promising anode materials for lithium ion batteries because of its extremely high theoretical capacity. However, silicon suffers from mechanical degradation caused by huge volume change and unstable solid electrolyte interphase (SEI) layers. Herein, we report an in situ electrochemical atomic force microscopy (EC-AFM) method to directly visualize the surface topography and analyze Young's modulus of micron-sized (Micron-Si) and nano-sized (Nano-Si) silicon electrodes. Our results show Micron-Si electrodes experienced volume expansion and contraction process which resulted in continuous growth of a thick but soft SEI layer on the surface. In contrast, Nano-Si electrodes demonstrate a thin SEI layer due to absence of volume expansion and contraction process. Young's modulus value shows that the SEI film of Nano-Si electrodes is harder than that of the Micron-Si electrodes. Ex situ XPS analysis reveals that Nano-Si electrodes are composed of mainly inorganic components particularly LiF and carbonate-like species which might contribute to the increased hardness. Results from present study may be helpful to build better SEI layer with good Young's modulus to buffer volume expansion of Si. (C) 2018 Published by Elsevier B.V.
引用
收藏
页码:67 / 74
页数:8
相关论文
共 57 条
[41]   One-Dimensional Silicon Nanostructures for Li Ion Batteries [J].
Song, Taeseup ;
Hu, Liangbing ;
Paik, Ungyu .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (04) :720-731
[42]   Li Segregation Induces Structure and Strength Changes at the Amorphous Si/Cu Interface [J].
Stournara, Maria E. ;
Xiao, Xingcheng ;
Qi, Yue ;
Johari, Priya ;
Lu, Peng ;
Sheldon, Brian W. ;
Gao, Huajian ;
Shenoy, Vivek B. .
NANO LETTERS, 2013, 13 (10) :4759-4768
[43]   Formation of Stable Phosphorus-Carbon Bond for Enhanced Performance in Black Phosphorus Nanoparticle-Graphite Composite Battery Anodes [J].
Sun, Jie ;
Zheng, Guangyuan ;
Lee, Hyun-Wook ;
Liu, Nian ;
Wang, Haotian ;
Yao, Hongbin ;
Yang, Wensheng ;
Cui, Yi .
NANO LETTERS, 2014, 14 (08) :4573-4580
[44]   In Situ Atomic Force Microscopy Study of Initial Solid Electrolyte Interphase Formation on Silicon Electrodes for Li-Ion Batteries [J].
Tokranov, Anton ;
Sheldon, Brian W. ;
Li, Chunzeng ;
Minne, Stephen ;
Xiao, Xingcheng .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (09) :6672-6686
[45]   A BETTER BATTERY [J].
Van Noorden, Richard .
NATURE, 2014, 507 (7490) :26-28
[46]  
Wang L., 2012, ANGEW CHEM, V124, P9168, DOI DOI 10.1002/ange.201204591
[47]   Direct visualization of solid electrolyte interphase on Li4Ti5O12 by in situ AFM [J].
Wang, Shuwei ;
Yang, Kai ;
Gao, Fei ;
Wang, Deyu ;
Shen, Cai .
RSC ADVANCES, 2016, 6 (81) :77105-77110
[48]  
Wu H, 2012, NAT NANOTECHNOL, V7, P309, DOI [10.1038/nnano.2012.35, 10.1038/NNANO.2012.35]
[49]   Improved Performance of the Silicon Anode for Li-Ion Batteries: Understanding the Surface Modification Mechanism of Fluoroethylene Carbonate as an Effective Electrolyte Additive [J].
Xu, Chao ;
Lindgren, Fredrik ;
Philippe, Bertrand ;
Gorgoi, Mihaela ;
Bjorefors, Fredrik ;
Edstrom, Kristina ;
Gustafsson, Torbjorn .
CHEMISTRY OF MATERIALS, 2015, 27 (07) :2591-2599
[50]   Graphene-Based Mesoporous SnO2 with Enhanced Electrochemical Performance for Lithium-Ion Batteries [J].
Yang, Sheng ;
Yue, Wenbo ;
Zhu, Jia ;
Ren, Yu ;
Yang, Xiaojing .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (28) :3570-3576