In-situ study of surface structure evolution of silicon anodes by electrochemical atomic force microscopy

被引:50
作者
Huang, Shiqiang [1 ,2 ]
Cheong, Ling-Zhi [3 ]
Wang, Shuwei [1 ]
Wang, Deyu [1 ]
Shen, Cai [1 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, 1219 Zhongguan Rd, Ningbo 315201, Zhejiang, Peoples R China
[2] Univ Chinese Acad Sci, 19 A Yuquan Rd, Beijing 100049, Peoples R China
[3] Ningbo Univ, Sch Marine Sci, Ningbo 315211, Zhejiang, Peoples R China
关键词
Lithium-ion battery; Size effect; Atomic force microscopy; Surface structure; Silicon anode; SOLID-ELECTROLYTE INTERPHASE; LITHIUM-ION BATTERIES; FLUOROETHYLENE CARBONATE; THIN-FILMS; PERFORMANCE; LI; LNTERPHASE; LITHIATION; AFM; SPECTROSCOPY;
D O I
10.1016/j.apsusc.2018.05.020
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silicon is one of the most promising anode materials for lithium ion batteries because of its extremely high theoretical capacity. However, silicon suffers from mechanical degradation caused by huge volume change and unstable solid electrolyte interphase (SEI) layers. Herein, we report an in situ electrochemical atomic force microscopy (EC-AFM) method to directly visualize the surface topography and analyze Young's modulus of micron-sized (Micron-Si) and nano-sized (Nano-Si) silicon electrodes. Our results show Micron-Si electrodes experienced volume expansion and contraction process which resulted in continuous growth of a thick but soft SEI layer on the surface. In contrast, Nano-Si electrodes demonstrate a thin SEI layer due to absence of volume expansion and contraction process. Young's modulus value shows that the SEI film of Nano-Si electrodes is harder than that of the Micron-Si electrodes. Ex situ XPS analysis reveals that Nano-Si electrodes are composed of mainly inorganic components particularly LiF and carbonate-like species which might contribute to the increased hardness. Results from present study may be helpful to build better SEI layer with good Young's modulus to buffer volume expansion of Si. (C) 2018 Published by Elsevier B.V.
引用
收藏
页码:67 / 74
页数:8
相关论文
共 57 条
[1]   Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes [J].
Ahmed, Bilal ;
Anjum, Dalaver H. ;
Gogotsi, Yury ;
Alshareef, Husam N. .
NANO ENERGY, 2017, 34 :249-256
[2]  
Armstrong G., 2010, ADV MATER, V18, P2597
[3]   Reaction of Li with alloy thin films studied by in situ AFM [J].
Beaulieu, LY ;
Hatchard, TD ;
Bonakdarpour, A ;
Fleischauer, MD ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (11) :A1457-A1464
[4]   The effect of fluoroethylene carbonate additive content on the formation of the solid-electrolyte interphase and capacity fade of Li-ion full-cell employing nano Si-graphene composite anodes [J].
Bordes, Arnaud ;
Eom, KwangSup ;
Fuller, Thomas F. .
JOURNAL OF POWER SOURCES, 2014, 257 :163-169
[5]   In situ and operando atomic force microscopy of high-capacity nano-silicon based electrodes for lithium-ion batteries [J].
Breitung, Ben ;
Baumann, Peter ;
Sommer, Heino ;
Janek, Juergen ;
Brezesinski, Torsten .
NANOSCALE, 2016, 8 (29) :14048-14056
[6]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[7]   Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes [J].
Chan, Candace K. ;
Ruffo, Riccardo ;
Hong, Seung Sae ;
Cui, Yi .
JOURNAL OF POWER SOURCES, 2009, 189 (02) :1132-1140
[8]   Enhancing electrochemical performance of silicon film anode by vinylene carbonate electrolyte additive [J].
Chen, Libao ;
Wang, Ke ;
Xie, Xiaohua ;
Xie, Jingying .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (11) :A512-A515
[9]   Surface layer formed on silicon thin-film electrode in lithium bis(oxalato) borate-based electrolyte [J].
Choi, Nam-Soon ;
Yew, Kyoung Han ;
Kim, Ho ;
Kim, Sung-Soo ;
Choi, Wan-Uk .
JOURNAL OF POWER SOURCES, 2007, 172 (01) :404-409
[10]   Stress generation and fracture in lithium insertion materials [J].
Christensen, J ;
Newman, J .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2006, 10 (05) :293-319