On a generic theory of the organic electrochemical transistor dynamics

被引:7
作者
Athanasiou, Vasileios [1 ]
Pecqueur, Sebastien [2 ]
Vuillaume, Dominique [2 ]
Konkoli, Zoran [1 ]
机构
[1] Chalmers Univ Technol, Dept Microtechnol & Nanosci, Gothenburg, Sweden
[2] Lille Univ, CNRS, Inst Elect Microelect & Nanotechnol, Villeneuve Dascq, France
基金
欧盟地平线“2020”;
关键词
Organic electrochemical transistor; OECT; Transient behavior; Spike currents; Device modeling; INTERFACES;
D O I
10.1016/j.orgel.2019.05.040
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the recent years, the organic electrochemical transistors (OECT) have attracted considerable attention for biosensing applications due to the biocompatibility of their materials and their low operating voltages. Upon exposure to an electrolyte, the drain current becomes ion-dependent. This can be exploited for sensing ion applications. To facilitate the process of designing such powerful ion sensing devices one needs the ability to simulate the transient dynamical behavior of many OECT elements connected in a network. We have developed a generic theoretical model of the OECT element that can be used for such purposes. Our OECT element resembles a typical FET three-port element with the response function parameterized with an additional time-dependent variable, T, which describes how far the element operates from the stationary state. We have constructed a dynamical equation that describes how T changes in time when the element is exposed to arbitrary external voltages. This makes the element model highly interoperable with generic electrical circuit simulators. We provide an example of possible numerical implementation using the modified nodal analysis. We tested the underlying theoretical assumptions by comparing model predictions with experimental data and found a reasonable agreement. Our model describes the typical current spikes observed in the literature.
引用
收藏
页码:39 / 49
页数:11
相关论文
共 20 条
[1]   Steady-state and transient behavior of organic electrochemical transistors [J].
Bernards, Daniel A. ;
Malliaras, George G. .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (17) :3538-3544
[2]   PEDOT:PSS Interfaces Support the Development of Neuronal Synaptic Networks with Reduced Neuroglia Response In vitro [J].
Cellot, Giada ;
Lagonegro, Paola ;
Tarabella, Giuseppe ;
Scaini, Denis ;
Fabbri, Filippo ;
Iannotta, Salvatore ;
Prato, Maurizio ;
Salviati, Giancarlo ;
Ballerini, Laura .
FRONTIERS IN NEUROSCIENCE, 2016, 9
[3]   Organic transistor platform with integrated microfluidics for in-line multi-parametric in vitro cell monitoring [J].
Curto, Vincenzo F. ;
Marchiori, Bastien ;
Hama, Adel ;
Pappa, Anna-Maria ;
Ferro, Magali P. ;
Braendlein, Marcel ;
Rivnay, Jonathan ;
Fiocchi, Michel ;
Malliaras, George G. ;
Ramuz, Marc ;
Owens, Roisin M. .
MICROSYSTEMS & NANOENGINEERING, 2017, 3
[4]   On the transient response of organic electrochemical transistors [J].
Faria, Gregorio C. ;
Duong, Duc T. ;
Salleo, Alberto .
ORGANIC ELECTRONICS, 2017, 45 :215-221
[5]   Microsecond Response in Organic Electrochemical Transistors: Exceeding the Ionic Speed Limit [J].
Friedlein, Jacob T. ;
Donahue, Mary J. ;
Shaheen, Sean E. ;
Malliaras, George G. ;
McLeod, Robert R. .
ADVANCED MATERIALS, 2016, 28 (38) :8398-8404
[6]   Optical Measurements Revealing Nonuniform Hole Mobility in Organic Electrochemical Transistors [J].
Friedlein, Jacob T. ;
Shaheen, Sean E. ;
Malliaras, George G. ;
McLeod, Robert R. .
ADVANCED ELECTRONIC MATERIALS, 2015, 1 (11)
[7]   Textile Organic Electrochemical Transistors as a Platform for Wearable Biosensors [J].
Gualandi, I. ;
Marzocchi, M. ;
Achilli, A. ;
Cavedale, D. ;
Bonfiglio, A. ;
Fraboni, B. .
SCIENTIFIC REPORTS, 2016, 6
[8]  
Hempel F., 2016, FRONTIERS NEUROSCIEN, V10, DOI 10.3389/conf.fnins.2016.93.00108
[9]   Electronic control of Ca2+ signalling in neuronal cells using an organic electronic ion pump [J].
Isaksson, Joakim ;
Kjaell, Peter ;
Nilsson, David ;
Robinson, Nathaniel D. ;
Berggren, Magnus ;
Richter-Dahlfors, Agneta .
NATURE MATERIALS, 2007, 6 (09) :673-679
[10]  
Lee Wonryung, 2017, P NATL ACAD SCI