NONVANISHING OF POINCARE SERIES ON AVERAGE

被引:3
作者
Das, Soumya [1 ]
Ganguly, Satadal [2 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
[2] Indian Stat Inst, Theoret Stat & Math Unit, Kolkata 700178, India
关键词
Poincare series; modular form; Kloosterman sum;
D O I
10.1142/S1793042112501205
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a positive proportion of the Poincare series do not vanish identically when either the index or the weight varies over an interval of suitable length, the other one being fixed.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 10 条
[1]   Linear relations among Poincare series [J].
Das, Soumya ;
Ganguly, Satadal .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2012, 44 :988-1000
[2]  
Kowalski E, 2007, REV MAT IBEROAM, V23, P281
[3]   THE VANISHING OF RAMANUJAN FUNCTION-TAU(N) [J].
LEHMER, DH .
DUKE MATHEMATICAL JOURNAL, 1947, 14 (02) :429-433
[4]   ON THE NON-VANISHING OF POINCARE SERIES [J].
LEHNER, J .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1980, 23 (JUN) :225-228
[5]   ON THE NON-VANISHING OF POINCARE-SERIES [J].
MOZZOCHI, CJ .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1989, 32 :131-137
[6]   THE VANISHING OF POINCARE SERIES [J].
RANKIN, RA .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1980, 23 (JUN) :151-161
[7]  
Ribet K.A., 1977, LECT NOTES MATH, P17
[9]  
Weil A., OEUVRES, VI, P386
[10]  
[No title captured]