Interconnected Pt-Nanodendrite/DNA/Reduced-Graphene-Oxide Hybrid Showing Remarkable Oxygen Reduction Activity and Stability

被引:83
作者
Tiwari, Jitendra N. [1 ]
Kemp, Kingsley Christian [1 ]
Nath, Krishna [2 ]
Tiwari, Rajanish N. [3 ]
Nam, Hong-Gil [2 ]
Kim, Kwang S. [1 ,4 ]
机构
[1] Pohang Univ Sci & Technol, Dept Chem, Ctr Superfunct Mat, Pohang 790784, South Korea
[2] DGIST, Dept New Biol, Taegu 711873, South Korea
[3] Toyota Technol Inst, Nagoya, Aichi 4688511, Japan
[4] Ulsan Natl Inst Sci & Technol, Dept Chem, Ulsan 689798, South Korea
关键词
Pt nanodendrites; DNA; fuel cells; oxygen reduction reaction; catalytic activity; METHANOL FUEL-CELLS; ORDERED SILICON NANOCONES; PLATINUM NANOPARTICLES; ELECTROOXIDATION ACTIVITY; STABLE ELECTROCATALYSTS; CATALYTIC-ACTIVITY; TRANSITION-METALS; CATHODE CATALYSTS; FACILE SYNTHESIS; CARBON-MONOXIDE;
D O I
10.1021/nn4038404
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Controlling the morphology and size of platinum nanodendrites (PtDs) is a key factor in improving their catalytic activity and stability. Here, we report the synthesis of PtDs on genomic-double-stranded-DNA/reduced-graphene-oxide (gdsDNA/rGO) by the NaBH4 reduction of H2PtCl6 in the presence of plant gdsDNA. Compared to industrially adopted catalysts (i.e., state-of-the-art PVC catalyst, Pt/rGO, Pt3Co, etc.), the as-synthesized PtDs/gdsDNA/rGO hybrid displays very high oxygen reduction reaction (ORR) catalytic activities (much higher than the 2015 U.S. Department of Energy (DOE) target values), which are the rate-determining steps in electrochemical energy devices, In terms of onset-potential, half-wave potential, specific-activity, mass-activity, stability, and durability. Moreover, the hybrid exhibits a highly stable mass activity for the ORR over a wide pH range of 1-13. These exceptional properties would make the hybrid applicable in next-generation electrochemical energy devices.
引用
收藏
页码:9223 / 9231
页数:9
相关论文
共 60 条
[1]   Oxygen electroreduction on FeII and FeIII coordinated to N4 chelates.: Reversible potentials for the intermediate steps from quantum theory [J].
Anderson, AB ;
Sidik, RA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (16) :5031-5035
[2]   Study of carbon monoxide adsorption and oxidation on Pt(111) by using an electrochemical impinging jet cell [J].
Bergelin, M ;
Feliu, JM ;
Wasberg, M .
ELECTROCHIMICA ACTA, 1998, 44 (6-7) :1069-1075
[3]   Platinum nanoparticle shape effects on benzene hydrogenation selectivity [J].
Bratlie, Kaitlin M. ;
Lee, Hyunjoo ;
Komvopoulos, Kyriakos ;
Yang, Peidong ;
Somorjai, Gabor A. .
NANO LETTERS, 2007, 7 (10) :3097-3101
[4]   Polyol synthesis of platinum nanostructures: Control of morphology through the manipulation of reduction kinetics [J].
Chen, JY ;
Herricks, T ;
Xia, YN .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (17) :2589-2592
[5]   Noncovalent Interactions of DNA Bases with Naphthalene and Graphene [J].
Cho, Yeonchoo ;
Min, Seung Kyu ;
Yun, Jeonghun ;
Kim, Woo Youn ;
Tkatchenko, Alexandre ;
Kim, Kwang S. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (04) :2090-2096
[6]   Electrocatalyst approaches and challenges for automotive fuel cells [J].
Debe, Mark K. .
NATURE, 2012, 486 (7401) :43-51
[7]   CO ELECTROOXIDATION ON WELL-CHARACTERIZED PT-RU ALLOYS [J].
GASTEIGER, HA ;
MARKOVIC, N ;
ROSS, PN ;
CAIRNS, EJ .
JOURNAL OF PHYSICAL CHEMISTRY, 1994, 98 (02) :617-625
[8]   Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs [J].
Gasteiger, HA ;
Kocha, SS ;
Sompalli, B ;
Wagner, FT .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2005, 56 (1-2) :9-35
[9]   Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications [J].
Georgakilas, Vasilios ;
Otyepka, Michal ;
Bourlinos, Athanasios B. ;
Chandra, Vimlesh ;
Kim, Namdong ;
Kemp, K. Christian ;
Hobza, Pavel ;
Zboril, Radek ;
Kim, Kwang S. .
CHEMICAL REVIEWS, 2012, 112 (11) :6156-6214
[10]  
Greeley J, 2009, NAT CHEM, V1, P552, DOI [10.1038/nchem.367, 10.1038/NCHEM.367]